Advertisements
Advertisements
प्रश्न
In the figure, ∠DBC = 58°. BD is diameter of the circle.
Calculate:
- ∠BDC
- ∠BEC
- ∠BAC
उत्तर
∠DBC = 58° ...(Given)
Now, BD is the diameter.
∴ ∠DCB = 90° ...(Angle in a semicircle)
i. In ΔBDC,
∠BDC + 90° + 58° = 180° ...(Sum of the angles of a triangle)
∴ ∠BDC = 180° – (90° + 58°) = 32°
ii. BECD is a cyclic quadrilateral.
∵ ∠BEC + ∠BDC = 180° ...(Opposite angles of a cyclic quadrilateral)
∴ ∠BEC = 180° – ∠BDC
∴ ∠BEC = 180° – 32° = 148°
iii. ∠BAC = ∠BDC = 32° ...(Angles in the same segment of a circle)
APPEARS IN
संबंधित प्रश्न
In the given figure, RS is a diameter of the circle. NM is parallel to RS and ∠MRS = 29°. Calculate : ∠RNM
In the figure, given alongside, AB || CD and O is the centre of the circle. If ∠ADC = 25°; find the angle AEB. Give reasons in support of your answer.
In the given figure, AB is a diameter of the circle. Chord ED is parallel to AB and ∠EAB = 63°.
Calculate:
- ∠EBA,
- ∠BCD.
Prove that the perimeter of a right triangle is equal to the sum of the diameter of its incircle and twice the diameter of its circumcircle.
The following figure shows a circle with PR as its diameter. If PQ = 7 cm and QR = 3RS = 6 cm, find the perimeter of the cyclic quadrilateral PQRS.
In the given figure, AB is the diameter of a circle with centre O.
If chord AC = chord AD, prove that:
- arc BC = arc DB
- AB is bisector of ∠CAD.
Further, if the length of arc AC is twice the length of arc BC, find:
- ∠BAC
- ∠ABC
In the figure, given below, AB and CD are two parallel chords and O is the centre. If the radius of the circle is 15 cm, fins the distance MN between the two chords of lengths 24 cm and 18 cm respectively.
In the given figure, AB is a diameter of the circle. Chord ED is parallel to AB and ∠EAB = 63°. Calculate : ∠BCD.
In the given figure, AB is a diameter of the circle with centre O. DO is parallel to CB and ∠DCB = 120°.
Calculate : ∠ADC
Also, show that the ΔAOD is an equilateral triangle.
In Fig, Chord ED is parallel to the diameter AC of the circle. Given ∠CBE = 65°, Calculate ∠ DEC.