Advertisements
Advertisements
प्रश्न
In the given below the figure, AB is parallel to DC, ∠BCD = 80° and ∠BAC = 25°, Find
(i) ∠CAD, (ii) ∠CBD, (iii) ∠ADC.
उत्तर
(i) ∠CAD = ∠BCE - ∠CAB
∴ ∠CAD = 80° - 25°
∴ ∠CAD = 55°
∵ Ext. of cyclic is equal to opp. int
(ii) ∠CBD = ∠CAD = 55° ...(Angles in the same segment)
(iii) ∠ ADC = 180° - ∠ DAB
∴ ∠ ADC = 180° - 80°
∴ ∠ ADC = 100°.
APPEARS IN
संबंधित प्रश्न
In the given figure, AOC is a diameter and AC is parallel to ED. If ∠CBE = 64°, calculate ∠DEC.
In a cyclic-trapezium, the non-parallel sides are equal and the diagonals are also equal. Prove it.
If I is the incentre of triangle ABC and AI when produced meets the circumcircle of triangle ABC in point D. If ∠BAC = 66° and ∠ABC = 80°.
Calculate:
- ∠DBC,
- ∠IBC,
- ∠BIC.
In the given figure, AB = AD = DC = PB and ∠DBC = x°. Determine, in terms of x :
- ∠ABD,
- ∠APB.
Hence or otherwise, prove that AP is parallel to DB.
In the figure, given below, AD = BC, ∠BAC = 30° and ∠CBD = 70°.
Find:
- ∠BCD
- ∠BCA
- ∠ABC
- ∠ADB
A triangle ABC is inscribed in a circle. The bisectors of angles BAC, ABC and ACB meet the circumcircle of the triangle at points P, Q and R respectively. Prove that :
∠ACB = 2∠APR,
If I is the incentre of triangle ABC and AI when produced meets the cicrumcircle of triangle ABC in points D . if ∠BAC = 66° and ∠ABC = 80°. Calculate : ∠IBC
If I is the incentre of triangle ABC and AI when produced meets the cicrumcircle of triangle ABC in points D. f ∠BAC = 66° and ∠ABC = 80°. Calculate : ∠BIC.
In the figure, AB = AC = CD, ∠ADC = 38°. Calculate: (i) ∠ ABC, (ii) ∠ BEC.
In the given figure, ∠CAB = 25°, find ∠BDC, ∠DBA and ∠COB