Advertisements
Advertisements
प्रश्न
A triangle ABC is inscribed in a circle. The bisectors of angles BAC, ABC and ACB meet the circumcircle of the triangle at points P, Q and R respectively. Prove that:
- ∠ABC = 2∠APQ,
- ∠ACB = 2∠APR,
- `∠QPR = 90^circ - 1/2 ∠BAC`.
उत्तर
Join PQ and PR
i. BQ is the bisector of ∠ABC
`=> ∠ABQ = 1/2 ∠ABC`
Also, ∠APQ = ∠ABQ
(Angle in the same segment)
∴ ∠ABC = 2∠APQ
ii. CR is the bisector of ∠ACB
`=> ∠ACR = 1/2 ∠ACB`
Also, ∠ACR = ∠APR
(Angle in the same segment)
∴ ∠ACB = 2∠APR
iii. Adding (i) and (ii)
We get
∠ABC + ∠ACB = 2(∠APR + ∠APQ) = 2∠QPR
`=>` 180° – ∠BAC = 2∠QPR
`=> ∠QPR = 90^circ - 1/2 ∠BAC`
APPEARS IN
संबंधित प्रश्न
In the given figure, ∠BAD = 65°, ∠ABD = 70°, ∠BDC = 45°
- Prove that AC is a diameter of the circle.
- Find ∠ACB.
In the given figure, AOC is a diameter and AC is parallel to ED. If ∠CBE = 64°, calculate ∠DEC.
The given figure shows a circle with centre O and ∠ABP = 42°.
Calculate the measure of:
- ∠PQB
- ∠QPB + ∠PBQ
In the figure, given below, CP bisects angle ACB. Show that DP bisects angle ADB.
In the figure given alongside, AB and CD are straight lines through the centre O of a circle. If ∠AOC = 80° and ∠CDE = 40°, find the number of degrees in ∠ABC.
In the given figure, ∠BAD = 65°, ∠ABD = 70° and ∠BDC = 45°. Find: ∠ ACB.
Hence, show that AC is a diameter.
If I is the incentre of triangle ABC and AI when produced meets the cicrumcircle of triangle ABC in points D . if ∠BAC = 66° and ∠ABC = 80°. Calculate : ∠IBC
In the given Figure. P is any point on the chord BC of a circle such that AB = AP. Prove that CP = CQ.
In the given below the figure, AB is parallel to DC, ∠BCD = 80° and ∠BAC = 25°, Find
(i) ∠CAD, (ii) ∠CBD, (iii) ∠ADC.
In the given figure, ∠CAB = 25°, find ∠BDC, ∠DBA and ∠COB