हिंदी

A triangle ABC is inscribed in a circle. The bisectors of angles BAC, ABC and ACB meet the circumcircle of the triangle at points P, Q and R respectively. Prove that: ∠ABC = 2∠APQ, ∠ACB = 2∠APR - Mathematics

Advertisements
Advertisements

प्रश्न

A triangle ABC is inscribed in a circle. The bisectors of angles BAC, ABC and ACB meet the circumcircle of the triangle at points P, Q and R respectively. Prove that:

  1. ∠ABC = 2∠APQ,
  2. ∠ACB = 2∠APR,
  3. `∠QPR = 90^circ - 1/2 ∠BAC`.

योग

उत्तर


Join PQ and PR

i. BQ is the bisector of ∠ABC

`=> ∠ABQ = 1/2 ∠ABC`

Also, ∠APQ = ∠ABQ

(Angle in the same segment)

∴ ∠ABC = 2∠APQ

ii. CR is the bisector of ∠ACB

`=> ∠ACR = 1/2 ∠ACB`

Also, ∠ACR = ∠APR

(Angle in the same segment)

∴ ∠ACB = 2∠APR

iii. Adding (i) and (ii)

We get

∠ABC + ∠ACB = 2(∠APR + ∠APQ) = 2∠QPR

`=>` 180° – ∠BAC = 2∠QPR

`=> ∠QPR = 90^circ - 1/2 ∠BAC`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 17: Circles - Exercise 17 (A) [पृष्ठ २६१]

APPEARS IN

सेलिना Mathematics [English] Class 10 ICSE
अध्याय 17 Circles
Exercise 17 (A) | Q 40.1 | पृष्ठ २६१

वीडियो ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×