Advertisements
Advertisements
प्रश्न
ΔABC मध्ये ∠BAC = 90°, रेख BL व रेख CM या ΔABC च्या मध्यगा आहेत, तर सिद्ध करा : 4(BL2 + CM2 ) = 5BC2.
उत्तर
पक्ष: ∠BAC = 90°
रेख BL व रेख CM या मध्यगा आहेत.
साध्य: 4(BL2 + CM2 ) = 5BC2.
सिद्धता:
ΔBAL मध्ये, ∠BAL = 90° ....[पक्ष]
∴ BL2 = AB2 + AL2 ...(i) [पायथागोरसचे प्रमेय]
ΔCAM मध्ये, ∠CAM = 90° ...[पक्ष]
∴ CM2 = AC2 + AM2 ...(ii) [पायथागोरसचे प्रमेय]
∴ BL2 + CM2 = AB2 + AC2 + AL2 + AM2 ...(iii) [(i) व (ii) ची बेरीज करून]
आता, AL = `1/2` AC व AM = `1/2` AB ...(iv) [रेख BL व रेख CM या मध्यगा आहेत.]
∴ BL2 + CM2
= AB2 + AC2 + `(1/2 "AC")^2 + (1/2 "AB")^2` ....[(iii) व (iv) वरून]
= AB2 + AC2 + `"AC"^2/4 + "AB"^2/4`
= AB2 + `"AB"^2/4 + "AC"^2 + "AC"^2/4`
= `(5"AB"^2)/4 + (5"AC"^2)/4`
∴ BL2 + CM2 = `5/4` (AB2 + AC2)
∴ 4(BL2 + CM2) = 5(AB2 + AC2) ...(v)
ΔBAC मध्ये, ∠BAC = 90° ....[पक्ष]
∴ BC2 = AB2 + AC2 ....(vi) [पायथागोरसचे प्रमेय]
∴ 4(BL2 + CM2) = 5BC2 ..............[(v) व (vi) वरून]
APPEARS IN
संबंधित प्रश्न
पुढील प्रत्येक उपप्रश्नासाठी 4 पर्यायी उत्तरे दिली आहेत. त्यांपैकी अचूक उत्तराचा योग्य पर्याय निवडून त्याचे वर्णाक्षर लिहा.
काटकोन त्रिकोणात काटकोन करणाऱ्या बाजूंच्या वर्गांची बेरीज 169 असेल, तर त्याच्या कर्णाची लांबी किती?
काटकोन त्रिकोणामध्ये काटकोन करणाऱ्या बाजू 24 सेमी व 18 सेमी असतील तर त्याच्या कर्णाची लांबी ______ असेल.
एका काटकोन त्रिकोणामध्ये काटकोन करणाऱ्या बाजू 9 सेमी व 12 सेमी आहेत, तर त्या त्रिकोणाच्या कर्णाची लांबी काढा.
समद्विभुज काटकोन त्रिकोणाची बाजू x आहे, तर त्याच्या कर्णाची लांबी काढा.
पुढील प्रत्येक उपप्रश्नासाठी 4 पर्यायी उत्तरे दिली आहेत. त्यांपैकी अचूक उत्तराचा योग्य पर्याय निवडून त्याचे वर्णाक्षर लिहा.
एका चौरसाच्या कर्णाची लांबी `sqrt2` सेमी असेल, तर त्या चौरसाच्या प्रत्येक बाजूची लांबी किती?
पुढील प्रत्येक उपप्रश्नासाठी 4 पर्यायी उत्तरे दिली आहेत. त्यांपैकी अचूक उत्तराचा योग्य पर्याय निवडून त्याचे वर्णाक्षर लिहा.
एका समभुज चौकोनाच्या कर्णाची लांबी अनुक्रमे 60 व 80 असेल, तर त्या समभुज चौकोनाच्या बाजूची लांबी किती?
10 मीटर लांबीची एक शिडी जमिनीपासून 8 मीटर उंचीच्या एका खिडकीपाशी पोहोचते, तर त्या भिंतीचा पाया व शिडीचे खालचे टोक यांमधील अंतर काढण्यासाठी खालील कृती पूर्ण करा.
कृती: समजा, सोबतच्या आकृतीत,
PQ ही भिंतीची उंची आहे.
PR ही शिडी आहे आणि QR त्या भिंतीचा पाया व शिडीचे खालचे टोक यांमधील अंतर आहे.
∆PQR मध्ये, ∠PQR = 90°,
पायथागोरसच्या प्रमेयानुसार, PQ2 + `square` = PR2 … (i)
PR = 10, PQ = `square`
या किमती (i) मध्ये ठेवून,
QR2 + 82 = 102
QR2 = 102 – 82
QR2 = `square - 64`
QR2 = `square`
QR = 6
यावरून, त्या भिंतीचा पाया व शिडीचे खालचे टोक यांमधील अंतर 6 मीटर आहे.
समद्विभुज काटकोन त्रिकोणाच्या एकरूप बाजूंची लांबी 7 सेमी आहे. त्याची परिमिती काढा.
वरील आकृतीत `square`ABCD हा आयत आहे. जर AB = 5, AC = 13, तर बाजू BC ची लांबी काढण्यासाठी खालील कृती पर्ण करा.
कृती: ΔABC हा `square` त्रिकोण आहे.
∴ पायथागोरसच्या प्रमेयानुसार,
AB2 + BC2 = AC2
∴ 25 + BC2 = `square`
∴ BC2 = `square`
∴ BC = `square`
एका चौरसाचा कर्ण `10sqrt2` सेमी असतील तर त्याच्या बाजूची लांबी काढा.