Advertisements
Advertisements
प्रश्न
ΔABC में रेख BD यह ∠ABC की समद्विभाजक है, यदि AB = x, BC = x + 5, AD = x – 2, DC = x + 2 तो x का मान ज्ञात कीजिए।
उत्तर
ΔABC में रेख BD यह ∠ABC की समद्विभाजक है |
∴ त्रिभुज के कोण समद्विभाजक के गुणधर्म से,
`"AB"/"BC" = "AD"/"DC"`
∴ `x/(x + 5) = (x - 2)/(x + 2)`
∴ x(x + 2) = (x - 2) (x - 5)
∴ x2 + 2x = x(x + 5) - 2(x + 5)
∴ x2 + 2x = x2 + 5x - 2x - 10
∴ 2x = 3x - 10
∴ 2x - 3x = -10
∴ -x = -10
∴ x = 10
x = 10.
APPEARS IN
संबंधित प्रश्न
ΔMNP में रेख NQ यह ∠N की समद्विभाजक है। यदि MN = 5, PN = 7, MQ = 2.5 तो QP का मान ज्ञात कीजिए।
आकृति में दी गई जानकारी के आधार पर QP का मान ज्ञात कीजिए।
ΔLMN में किरण MT यह ∠LMN की समद्विभाजक है। LM = 6, MN = 10, TN = 8 तो LT का मान ज्ञात कीजिए।
ΔABC में AB = AC, ∠B तथा ∠C के समद्विभाजक भुजा AC तथा भुजा AB को क्रमश: बिंदु D तथा E पर प्रतिच्छेदित करते हैं। तो सिद्ध कीजिए कि रेख ED || रेख BC
ΔPQR में रेख PM माध्यिका है। ∠PMQ तथा ∠PMR के समद्विभाजक भुजा PQ तथा भुजा PR को क्रमश: बिंदु X और बिंदु Y पर प्रतिच्छेदित करते हैं, तो सिद्ध कीजिए कि, XY || QR.
दिए गए रिक्त स्थानों को भरकर उपपत्ति पूर्ण कीजिए।
ΔPMQ में किरण MX यह ∠PMQ की समद्विभाजक है।
∴ `square/square = square/square` ........(I) (कोण समद्विभाजक प्रमेय)
ΔPMR में किरण MY यह ∠PMR की समद्विभाजक है।
∴ `square/square = square/square` ........(II) (कोण समद्विभाजक प्रमेय)
परंतु `"MP"/"MQ" = "MP"/"MR"` ................ (बिंदु M यह QR का मध्य बिंदु है अर्थात MQ = MR)
∴ `"PX"/"XQ" = "PY"/"YR"`
∴ XY || QR ............(समानुपात के मूलभूत प्रमेय का विलोम)
ΔPQR में, रेख PM माध्यिका है। ∠PMQ तथा ∠PMR के कोण समद्विभाजक भुजा PQ तथा भुजा PR को क्रमश: बिन्दु X तथा बिन्दु Y पर प्रतिच्छेदित करते हैं, तो सिद्ध कीजिए कि, XY || QR।
दिए गए रिक्त स्थानों की पूर्ति कर उपपत्ति पूर्ण कीजिए।
हल:
ΔPMQ में,
किरण MX यह ∠PMQ की समद्विभाजक है।
∴ `"MP"/"MQ" = square/square` .............(I) (कोण समद्विभाजक प्रमेय से)
उसी प्रकार, ΔPMR में,
किरण MY यह ∠PMR की समद्विभाजक है।
∴ `"MP"/"MR" = square/square` .............(II) (कोण समद्विभाजक प्रमेय से)
परंतु `"MP"/"MQ" = "MP"/"MR"` ................(III) (बिन्दु M यह QR का मध्यबिन्दु है अर्थात MQ = MR)
∴ `"PX"/square = square/"YR"` ............[(I), (II) व (III) से]
∴ XY || QR ...........(समानुपात के मूलभूत प्रमेय का विलोम)
निचे दी गई आकृति के आधार पर बिंदु A, ∠XYZ केसमद्विभाजक पर है। यदि AX = 2 सेमी तो AZ की लंबाई ज्ञात कीजिए ।
ΔABC में ∠BAC की समद्विभाजक भुजा BC पर लंब हो तो सिद्ध कीजिए कि D ABC समद्विबाहु त्रिभुज है।
निचे दी गई आकृति के आधार पर ΔPQR में यदि PQ > PR तथा ∠Q तथा ∠R के समद्विभाजक बिंदु S पर प्रतिच्छेदित करते हैं तो सिद्ध कीजिए कि SQ > SR
ΔABC में, किरण BD यह ∠ABC का कोण समद्विभाजक है। A - D - C, रेख DE || भुजा BC, A - E - B हो, तो सिद्ध कीजिए `("AB")/("BC") = ("AE")/("EB")`
उपपत्ति:
ΔABC में, किरण BD यह ∠B को समद्विभाजित करता है।
∴ `square/("BC") = ("AD")/("DC")` ......(I) (`square`)
ΔABC में, DE || BC
∴ `(square)/("EB") = ("AD")/("DC")` ....(II) (`square`)
∴ `("AB")/square = square/("EB")` [(I) व (II) से]