हिंदी
महाराष्ट्र स्टेट बोर्डएसएससी (हिंदी माध्यम) १० वीं कक्षा

ΔABC में रेख BD यह ∠ABC की समद्‌विभाजक है, यदि AB = x, BC = x + 5, AD = x – 2, DC = x + 2 तो x का मान ज्ञात कीजिए। - Mathematics 2 - Geometry [गणित २ - ज्यामिति]

Advertisements
Advertisements

प्रश्न

ΔABC में रेख BD यह ∠ABC की समद्‌विभाजक है, यदि AB = x, BC = x + 5, AD = x – 2, DC = x + 2 तो x का मान ज्ञात कीजिए।

योग

उत्तर

ΔABC में रेख BD यह ∠ABC की समद्‌विभाजक है |

∴ त्रिभुज के कोण समद्‌विभाजक के गुणधर्म से,

`"AB"/"BC" = "AD"/"DC"`

∴ `x/(x + 5) = (x - 2)/(x + 2)`

∴ x(x + 2) = (x - 2) (x - 5)

∴ x2 + 2x = x(x + 5) - 2(x + 5)

∴ x2 + 2x = x2 + 5x - 2x - 10

∴ 2x = 3x - 10

∴ 2x - 3x = -10

∴ -x = -10

∴ x = 10

x = 10. 

shaalaa.com
त्रिभुज के कोण समद्‌विभाजक का प्रमेय
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: समरूपता - प्रश्नसंग्रह 1.2 [पृष्ठ १५]

APPEARS IN

बालभारती Geometry (Mathematics 2) [Hindi] 10 Standard SSC Maharashtra State Board
अध्याय 1 समरूपता
प्रश्नसंग्रह 1.2 | Q 9. | पृष्ठ १५

संबंधित प्रश्न

आकृति में दी गई जानकारी के आधार पर QP का मान ज्ञात कीजिए।


ΔLMN में किरण MT यह ∠LMN की समद्‌विभाजक है। LM = 6, MN = 10, TN = 8 तो LT का मान ज्ञात कीजिए।


ΔABC में AB = AC, ∠B तथा ∠C के समद्‌विभाजक भुजा AC तथा भुजा AB को क्रमश: बिंदु D तथा E पर प्रतिच्छेदित करते हैं। तो सिद्ध कीजिए कि रेख ED || रेख BC


ΔPQR में रेख PM माध्यिका है। ∠PMQ तथा ∠PMR के समद्‌विभाजक भुजा PQ तथा भुजा PR को क्रमश: बिंदु X और बिंदु Y पर प्रतिच्छेदित करते हैं, तो सिद्ध कीजिए कि, XY || QR.

दिए गए रिक्त स्थानों को भरकर उपपत्ति पूर्ण कीजिए।

ΔPMQ में किरण MX यह ∠PMQ की समद्‌विभाजक है।

∴ `square/square = square/square` ........(I) (कोण समद्‌विभाजक प्रमेय)

ΔPMR में किरण MY यह ∠PMR की समद्‌विभाजक है।

∴ `square/square = square/square` ........(II) (कोण समद्‌विभाजक प्रमेय)

परंतु `"MP"/"MQ" = "MP"/"MR"` ................ (बिंदु M यह QR का मध्य बिंदु है अर्थात MQ = MR)

∴ `"PX"/"XQ" = "PY"/"YR"`

∴ XY || QR ............(समानुपात के मूलभूत प्रमेय का विलोम)

 


आकृति ΔABC में ∠B तथा ∠C के समद्‌विभाजक परस्पर एक दूसरे को बिंदु X पर प्रतिच्छेदित करते हैं। रेखा AX यह भुजा BC को बिंदु Y पर प्रतिच्छेदित करती है; यदि AB = 5, AC = 4, BC = 6 तो `"AX"/"XY"` का मान ज्ञात कीजिए।


निचे दी गई आकृति के आधार पर बिंदु A, ∠XYZ केसमद्‌विभाजक पर है। यदि AX = 2 सेमी तो AZ की लंबाई ज्ञात कीजिए ।


निचे दी गई आकृति के आधार पर ∠RST = 56°, रेख PT ⊥ किरण ST, रेख PR ⊥ किरण SR तथा रेख PR ≅ रेख PT हो तो ∠RSP का माप ज्ञात कीजिए। कारणसहित लिखिए।


ΔABC में ∠BAC की समद्‌विभाजक भुजा BC पर लंब हो तो सिद्ध कीजिए कि D ABC समद्‌विबाहु त्रिभुज है।


निचे दी गई आकृति के आधार पर ΔPQR में यदि PQ > PR तथा ∠Q तथा ∠R के समद्‌विभाजक बिंदु S पर प्रतिच्छेदित करते हैं तो सिद्ध कीजिए कि SQ > SR


ΔABC में, किरण BD यह ∠ABC का कोण समद्विभाजक है। A - D - C, रेख DE || भुजा BC, A - E - B हो, तो सिद्ध कीजिए `("AB")/("BC") = ("AE")/("EB")`

उपपत्ति:

ΔABC में, किरण BD यह ∠B को समद्विभाजित करता है।

∴ `square/("BC") = ("AD")/("DC")`  ......(I) (`square`)

ΔABC में, DE || BC

∴ `(square)/("EB") = ("AD")/("DC")`   ....(II) (`square`)

∴ `("AB")/square = square/("EB")`   [(I) व (II) से]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×