हिंदी
महाराष्ट्र स्टेट बोर्डएसएससी (हिंदी माध्यम) ९ वीं कक्षा

निचे दी गई आकृति के आधार पर ∠RST = 56°, रेख PT ⊥ किरण ST, रेख PR ⊥ किरण SR तथा रेख PR ≅ रेख PT हो तो ∠RSP का माप ज्ञात कीजिए । कारणसहित लिखिए । - Mathematics 2 - Geometry [गणित २ - ज्यामिति]

Advertisements
Advertisements

प्रश्न

निचे दी गई आकृति के आधार पर ∠RST = 56°, रेख PT ⊥ किरण ST, रेख PR ⊥ किरण SR तथा रेख PR ≅ रेख PT हो तो ∠RSP का माप ज्ञात कीजिए। कारणसहित लिखिए।

योग

उत्तर

रेख PT ⊥ किरण ST और रेख PR ⊥ किरण SR     ...(दिया है।)

∴ बिंदु P ∠TSR के द्विभाजक पर स्थित है।    ...[कोण के किनारों से कोई भी बिंदु समान दूरी कोण के समद्विभाजक पर है।]

∴ किरण SP ∠RST का समद्विभाजक है।

∠RSP = 56°     ....[दिया है।]

∴ ∠RSP = `1/2 `∠RST

= `1/2 xx56°`

∴ ∠RSP = 28°

shaalaa.com
त्रिभुज के कोण समद्‌विभाजक का प्रमेय
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: त्रिभुज - प्रश्नसंग्रह 3.4 [पृष्ठ ४३]

APPEARS IN

बालभारती Geometry (Mathematics 2) [Hindi] 9 Standard Maharashtra State Board
अध्याय 3 त्रिभुज
प्रश्नसंग्रह 3.4 | Q 2. | पृष्ठ ४३

संबंधित प्रश्न

ΔMNP में रेख NQ यह ∠N की समद्‌विभाजक है। यदि MN = 5, PN = 7, MQ = 2.5 तो QP का मान ज्ञात कीजिए।

 


आकृति में दी गई जानकारी के आधार पर QP का मान ज्ञात कीजिए।


ΔLMN में किरण MT यह ∠LMN की समद्‌विभाजक है। LM = 6, MN = 10, TN = 8 तो LT का मान ज्ञात कीजिए।


ΔABC में रेख BD यह ∠ABC की समद्‌विभाजक है, यदि AB = x, BC = x + 5, AD = x – 2, DC = x + 2 तो x का मान ज्ञात कीजिए।


ΔABC में AB = AC, ∠B तथा ∠C के समद्‌विभाजक भुजा AC तथा भुजा AB को क्रमश: बिंदु D तथा E पर प्रतिच्छेदित करते हैं। तो सिद्ध कीजिए कि रेख ED || रेख BC


आकृति ΔABC में ∠B तथा ∠C के समद्‌विभाजक परस्पर एक दूसरे को बिंदु X पर प्रतिच्छेदित करते हैं। रेखा AX यह भुजा BC को बिंदु Y पर प्रतिच्छेदित करती है; यदि AB = 5, AC = 4, BC = 6 तो `"AX"/"XY"` का मान ज्ञात कीजिए।


निचे दी गई आकृति के आधार पर बिंदु A, ∠XYZ केसमद्‌विभाजक पर है। यदि AX = 2 सेमी तो AZ की लंबाई ज्ञात कीजिए ।


ΔABC में ∠BAC की समद्‌विभाजक भुजा BC पर लंब हो तो सिद्ध कीजिए कि D ABC समद्‌विबाहु त्रिभुज है।


निचे दी गई आकृति के आधार पर ΔPQR में यदि PQ > PR तथा ∠Q तथा ∠R के समद्‌विभाजक बिंदु S पर प्रतिच्छेदित करते हैं तो सिद्ध कीजिए कि SQ > SR


ΔABC में, किरण BD यह ∠ABC का कोण समद्विभाजक है। A - D - C, रेख DE || भुजा BC, A - E - B हो, तो सिद्ध कीजिए `("AB")/("BC") = ("AE")/("EB")`

उपपत्ति:

ΔABC में, किरण BD यह ∠B को समद्विभाजित करता है।

∴ `square/("BC") = ("AD")/("DC")`  ......(I) (`square`)

ΔABC में, DE || BC

∴ `(square)/("EB") = ("AD")/("DC")`   ....(II) (`square`)

∴ `("AB")/square = square/("EB")`   [(I) व (II) से]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×