मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता १२

Choose the correct alternative: The circle passing through (1, – 2) and touching the axis of x at (3, 0) passing through the point - Mathematics

Advertisements
Advertisements

प्रश्न

Choose the correct alternative:

The circle passing through (1, – 2) and touching the axis of x at (3, 0) passing through the point

पर्याय

  • (– 5, 2)

  • (2, – 5)

  • (5, – 2)

  • (– 2, 5)

MCQ

उत्तर

(5, – 2)

shaalaa.com
Circles
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Two Dimensional Analytical Geometry-II - Exercise 5.6 [पृष्ठ २१७]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
पाठ 5 Two Dimensional Analytical Geometry-II
Exercise 5.6 | Q 22 | पृष्ठ २१७

संबंधित प्रश्‍न

Find the equation of the following circles having the centre (0,0) and radius 2 units


Find the centre and radius of the circle

x2 + y2 – 22x – 4y + 25 = 0


Find the centre and radius of the circle.

(x + 2) (x – 5) + (y – 2) (y – 1) = 0


Find the equation of the circle whose centre is (-3, -2) and having circumference 16π.


Find the equation of the circle whose centre is (2, 3) and which passes through (1, 4).


Find the equation of the circle passing through the points (0, 1), (4, 3) and (1, -1).


If the lines x + y = 6 and x + 2y = 4 are diameters of the circle, and the circle passes through the point (2, 6) then find its equation.


Find the equation of the tangent to the circle x2 + y2 – 4x + 4y – 8 = 0 at (-2, -2).


Find the length of the tangent from (1, 2) to the circle x2 + y2 – 2x + 4y + 9 = 0.


The length of the tangent from (4, 5) to the circle x2 + y2 = 16 is:


The centre of the circle x2 + y2 – 2x + 2y – 9 = 0 is:


If the circle touches the x-axis, y-axis, and the line x = 6 then the length of the diameter of the circle is:


Obtain the equation of the circles with radius 5 cm and touching x-axis at the origin in general form


Find the equation of the circle with centre (2, −1) and passing through the point (3, 6) in standard form


Find the equation of circles that touch both the axes and pass through (− 4, −2) in general form


A circle of area 9π square units has two of its diameters along the lines x + y = 5 and x – y = 1. Find the equation of the circle


Find centre and radius of the following circles

2x2 + 2y2 – 6x + 4y + 2 = 0


Choose the correct alternative:

The equation of the circle passing through (1, 5) and (4, 1) and touching y-axis `x^2 + y^2 - 5x - 6y + 9 + lambda(4x + 3y - 19)` = where `lambda` is equal to


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×