Advertisements
Advertisements
प्रश्न
Choose the correct alternative:
The value of 2 + 4 + 6 + … + 2n is
पर्याय
`("n"("n" - 1))/2`
`("n"("n" + 1))/2`
`(2"n"(2"n" + 1))/2`
n(n + 1)
उत्तर
n(n + 1)
APPEARS IN
संबंधित प्रश्न
Expand the following by using binomial theorem.
(2a – 3b)4
Expand the following by using binomial theorem.
`(x + 1/x^2)^6`
Find the term independent of x in the expansion of
`(x^2 - 2/(3x))^9`
Find the term independent of x in the expansion of
`(2x^2 + 1/x)^12`
Prove that the term independent of x in the expansion of `(x + 1/x)^(2n)` is `(1*3*5...(2n - 1)2^n)/(n!)`.
The constant term in the expansion of `(x + 2/x)^6` is
The last term in the expansion of (3 + √2 )8 is:
Sum of binomial coefficient in a particular expansion is 256, then number of terms in the expansion is:
Expand `(2x^2 -3sqrt(1 - x^2))^4 + (2x^2 + 3sqrt(1 - x^2))^4`
Using binomial theorem, indicate which of the following two number is larger: `(1.01)^(1000000)`, 10
Find the coefficient of x15 in `(x^2 + 1/x^3)^10`
Find the constant term of `(2x^3 - 1/(3x^2))^5`
Find the last two digits of the number 3600
If n is a positive integer, using Binomial theorem, show that, 9n+1 − 8n − 9 is always divisible by 64
If n is an odd positive integer, prove that the coefficients of the middle terms in the expansion of (x + y)n are equal
If a and b are distinct integers, prove that a − b is a factor of an − bn, whenever n is a positive integer. [Hint: write an = (a − b + b)n and expaand]
In the binomial expansion of (1 + x)n, the coefficients of the 5th, 6th and 7th terms are in AP. Find all values of n