Advertisements
Advertisements
प्रश्न
Define half life of a reaction.
उत्तर
Half life of a reaction is defined as the time required for the reactant concentration to reach one half of its initial value.
APPEARS IN
संबंधित प्रश्न
The integrated rate equation for first order reaction is A → products
Derive the relation between half life and rate constant for a first order reaction
The experimental data for decomposition of N2O5
\[\ce{2N2O5 -> 4NO2 + O2}\] in gas phase at 318K are given below:
t/s | 0 | 400 | 800 | 1200 | 1600 | 2000 | 2400 | 2800 | 3200 |
102 × [N2O5]/mol L−1 | 1.63 | 1.36 | 1.14 | 0.93 | 0.78 | 0.64 | 0.53 | 0.43 | 0.35 |
- Plot [N2O5] against t.
- Find the half-life period for the reaction.
- Draw a graph between log [N2O5] and t.
- What is the rate law?
- Calculate the rate constant.
- Calculate the half-life period from k and compare it with (ii).
The rate constant for the first order decomposition of H2O2 is given by the following equation:
log k = 14.34 − 1.25 × 104 K/T. Calculate Ea for this reaction and at what temperature will its half-period be 256 minutes?
Which among the following reactions is an example of a zero order reaction?
a) `H_(2(g)) + I_(2(g)) -> 2HI_(g)`
b) `2H_2O_(2(l)) -> 2H_2O_(l) + O_(2(g))`
c) `C_12H_22O_(11(aq)) + H_2O_(l) -> C_6H_12O_(6(aq)) + C_6H_12O_(6(aq))`
d) `2NH_(3g)` `N(2g) + 3H_(2(g))`
The half life period of a radioactive element is 140 days. After 560 days, 1 g of element will be reduced to
Calculate half-life period of life order reaction whose rate constant is 200 sec–1
Show that the half-life of zero order reaction is `t_(1/2) = ([A]_0)/(2k)`.
Calculate the half-life of a first order reaction from the rate constant given below:
2 min−1
A first order reaction takes 40 min for 30% decomposition. Calculate `"t"_(1/2)`.