Advertisements
Advertisements
प्रश्न
Define self-inductance.
उत्तर
The self-inductance of a circuit is the ratio of magnetic flux (produced due to current in the circuit) linked with the circuit to the current flowing in it.
संबंधित प्रश्न
In a given coil of self-inductance of 5 mH, current changes from 4 A to 1 A in 30 ms. Calculate the emf induced in the coil.
Current in a circuit falls from 5.0 A to 0.0 A in 0.1 s. If an average emf of 200 V induced, give an estimate of the self-inductance of the circuit.
Write the SI unit and dimention of of co-efficient of self induction
Define self-inductance. Write its SI units.
The currents flowing in the two coils of self-inductance L1 = 16 mH and L2 = 12 mH are increasing at the same rate. If the power supplied to the two coil is equal, find the ratio of the currents ?
The currents flowing in the two coils of self-inductance L1 = 16 mH and L2 = 12 mH are increasing at the same rate. If the power supplied to the two coil is equal, find the ratio of the energies stored in the two coils at a given instant ?
Derive the expression for the self-inductance of a long solenoid of cross sectional area A and length l, having n turns per unit length.
A constant current i is maintained in a solenoid. Which of the following quantities will increase if an iron rod is inserted in the solenoid along its axis?
(a) magnetic field at the centre
(b) magnetic flux linked with the solenoid
(c) self-inductance of the solenoid
(d) rate of Joule heating.
Two solenoids have identical geometrical construction but one is made of thick wire and the other of thin wire. Which of the following quantities are different for the two solenoids?
(a) self-inductance
(b) rate of Joule heating if the same current goes through them
(c) magnetic field energy if the same current goes through them
(d) time constant if one solenoid is connected to one battery and the other is connected to another battery.
An inductor-coil carries a steady-state current of 2.0 A when connected across an ideal battery of emf 4.0 V. If its inductance is 1.0 H, find the time constant of the circuit.
An inductor of inductance 5.0 H, having a negligible resistance, is connected in series with a 100 Ω resistor and a battery of emf 2.0 V. Find the potential difference across the resistor 20 ms after the circuit is switched on.
What are the values of the self-induced emf in the circuit of the previous problem at the times indicated therein?
Consider a small cube of volume 1 mm3 at the centre of a circular loop of radius 10 cm carrying a current of 4 A. Find the magnetic energy stored inside the cube.
A long wire carries a current of 4.00 A. Find the energy stored in the magnetic field inside a volume of 1.00 mm3 at a distance of 10.0 cm from the wire.
Explain why the inductance of two coils connected in parallel is less than the inductance of either coil.
When a coil is connected to a D.C. source of e.m.f. 12 volt, then a current of 4 ampere flows in it. If the same coil is connected to a 12 volt, 25 cycle/s A.C sources, then the current flowing in it is 2.4 A. The self-inductance of the coil will be ______
Two rods of same material and volume having circular cross-section are subjected to tension T. Within the elastic limit, same force is applied to both the rods. Diameter of the first rod is half of the second rod, then the extensions of first rod to second rod will be in the ratio
The coefficient of self-inductance of a solenoid is 0.20 mH. If a core of soft iron of relative permeability 900 is inserted, then the coefficient of self-inductance will become nearly ______
The magnetic potential energy stored in a certain inductor is 15 mJ, when the current in the inductor is 40 mA. This inductor is of inductance ____________.
Consider a solenoid carrying supplied by a source with a constant emf containing iron core inside it. When the core is pulled out of the solenoid, the change in current will ______.
An e.m.f. of 10 volt is produced by a self inductance when the current changes at a steady rate from 6 A to 4 A in 1 millisecond. The value of self inductance is ____________.
Two coils of wire A and B are placed mutually perpendicular as shown. When current is changed in any one coil.
A coil of self-inductance L is connected in series with a bulb B and an AC source. Brightness of the bulb decreases when ____________.
A graph of magnetic flux `phi` versus current (I) is shown for four inductors A, B, C, D. Smaller value of self inductance is for inductor ____________.
A graph of magnetic flux `(phi)` versus current (I) is shown for four inductors A, B, C and D. Larger value of self-inductance is for inductor ____________.
When the current in a coil changes from 2 amp. to 4 amp. in 0.05 sec., an e.m.f. of 8 volt is induced in the coil. The coefficient of self inductance of the coil is ______.
Two coils of self inductances 2 mH and 8 mH are placed so close together that the effective flux in one coil is completely linked with the other. The mutual inductance between these coils is ______.
The coefficient of self inductance of a solenoid is 0.18 mH. If a core of soft iron of relative permeability 900 is inserted, then the coefficient of self inductance will become nearly ______.
When current i passes through an inductor of self-inductance L, energy stored in it is 1/2. L i2. This is stored in the ______.
An air-cored solenoid with length 30 cm, area of cross-section 25 cm2 and number of turns 800, carries a current of 2.5 A. The current is suddenly switched off in a brief time of 10-3s. Ignoring the variation in magnetic field near the ends of the solenoid, the average back emf induced across the ends of the open switch in the circuit would be ______.
If both the number of turns and core length of an inductor is doubled keeping other factors constant, then its self-inductance will be ______.
What is the unit of self-inductance of a coil?
A coil of wire of a certain radius has 600 turns and a self-inductance is 108 mH. The self-inductance of a second similar coil of 500 turns will be:
An average induced emf of 0.20 V appears in a coil when the current in it is changed from 5A in one direction to 5A in the opposite direction in 0.20 sec. Find the self induction of the coil.
In a fluorescent lamp choke (a small transformer) 100 V of reverse voltage is produced when the choke current changes uniformly from 0.25 A to 0 in a duration of 0.025 ms. The self-inductance of the choke (in mH) is estimated to be ______.
The inductance of a solenoid L having diameter d. Let n be the number of turns per unit length. The inductance per unit length near the middle of a solenoid is ______.
(Assume that, l = current passes through the turns, µ0 = Permeability of vacuum)
Calculate the self-inductance of a coil using the following data obtained when an AC source of frequency `(200/pi)` Hz and a DC source are applied across the coil.
AC Source | ||
S.No. | V (volts) | I (A) |
1 | 3.0 | 0.5 |
2 | 6.0 | 1.0 |
3 | 9.0 | 1.5 |
DC Source | ||
S.No. | V (volts) | I (A) |
1 | 4.0 | 1.0 |
2 | 6.0 | 1.5 |
3 | 8.0 | 2.0 |
An air-cored solenoid, 40 cm long and of cross-sectional area 5 cm2, is tightly wound with 400 turns of copper wire and carries a steady current of 10 A. (a) Calculate the self-inductance of the solenoid. (b) Find the emf induced if the current in the solenoid decreases to zero in 0.2 s.
State the factors on which the magnetic coupling coefficient of two coils depends.
Obtain an expression for the self inductance of a solenoid.
A toroid of a circular cross-section of radius 0.05 m has 2000 windings and a self-inductance of 0.04 H. What is (a) the current through the windings when the energy in its magnetic field is 2 × 10−6 J and (b) the central radius of the toroid?
What is meant by magnetic coupling coefficient?