मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

Determine the values of p and q that make the function f(x) differentiable on R where f(x) =px3,for x<2=x2+q,for x≥2 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Determine the values of p and q that make the function f(x) differentiable on R where

f(x) `{:( = "p"x^3",", "for"  x < 2),(= x^2 + "q"",", "for"  x ≥ 2):}`

बेरीज

उत्तर

f(x) `{:( = "p"x^3",", x < 2),(= x^2 + "q"",", x ≥ 2):}`

Continuity at x = 2:

f(x) is continuous at x = 2

∴ `lim_(x -> 2^-) "f"(x) = lim_(x -> 2^+) "f"(x)`

∴ `lim_(x -> 2^-) "p"x^3 = lim_(x -> 2^+) (x^2 + "q")`

∴ 8p = 4 + q

∴ 8p – q = 4    ...(i)

Differentiability at x = 2:

`lim_("h" -> 0^-) ("p"(2 + "h")^3 - (4 + "q"))/"h"`

= `lim_("h" ->0^+) ((2 + "h")^2 + "q" - (4 + "q"))/"h"`

∴  `lim_("h" -> 0^-) [("ph"^3 + 6"ph"^2 + 12"hp" + 8"p" - (4 + "q"))/"h"]`

= `lim_("h" -> 0) [("h"^2 + 4"h")/"h"]`

∴ `lim_("h" -> 0^-) ("ph"^2 + 6"ph" + 12"p") =  lim_("h" -> 0) ("h" + 4)`

∴ 12p = 4

∴ p = `1/3`

Substituting p = `1/3` in (i), we get

q = `8/3 - 4 = -4/3`

∴  p = `1/3`, q = `-4/3`

shaalaa.com
Definition of Derivative and Differentiability
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Differentiation - Miscellaneous Exercise 9 [पृष्ठ १९५]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
पाठ 9 Differentiation
Miscellaneous Exercise 9 | Q II. (3) | पृष्ठ १९५

संबंधित प्रश्‍न

Find the derivative of the following function w.r.t. x.:

x–9


Find the derivative of the following functions w. r. t. x.:

`x^(3/2)`


Find the derivative of the following function w. r. t. x.:

`7xsqrt x`


Find the derivative of the following function w. r. t. x.:

35


Differentiate the following w. r. t. x. : `x sqrtx + logx − e^x`


Differentiate the following w. r. t. x. : `x^(5/2) + 5x^(7/5)`


Differentiate the following w. r. t. x. : `2/7 x^(7/2) + 5/2 x^(2/5)`


Differentiate the following w. r. t. x. : x3 log x


Differentiate the following w. r. t. x. : `x^(5/2) e^x`


Differentiate the following w. r. t. x. : ex log x


Find the derivative of the following w. r. t. x by using method of first principle:

x2 + 3x – 1


Find the derivative of the following w. r. t. x by using method of first principle:

sin (3x)


Find the derivative of the following w. r. t. x by using method of first principle:

3x 


Find the derivative of the following w. r. t. x by using method of first principle:

sec (5x − 2)


Find the derivative of the following w. r. t. x by using method of first principle:

`x sqrt(x)`


Find the derivative of the following w. r. t. x. at the point indicated against them by using method of first principle:

`2^(3x + 1)` at x = 2


Find the derivative of the following w. r. t. x. at the point indicated against them by using method of first principle:

cos x at x = `(5pi)/4`


Show that f(x) = x2 is continuous and differentiable at x = 0


Discuss the continuity and differentiability of f(x) at x = 2

f(x) = [x] if x ∈ [0, 4). [where [*] is a greatest integer (floor) function]


Test the continuity and differentiability of f(x) `{:(= 3 x + 2, "if"  x > 2),(= 12 - x^2, "if"  x ≤ 2):}}` at x = 2


If f(x) `{:(= sin x - cos x, "if"  x ≤ pi/2),(= 2x - pi + 1, "if"  x > pi /2):}` Test the continuity and differentiability of f at x = `π/2`


Examine the function

f(x) `{:(= x^2 cos (1/x)",", "for"  x ≠ 0),(= 0",", "for"  x = 0):}`

for continuity and differentiability at x = 0


Select the correct answer from the given alternative:

If y = `("a"x + "b")/("c"x + "d")`, then `("d"y)/("d"x)` =


Select the correct answer from the given alternative:

If f(x) `{:( = x^2 + sin x + 1, "for"  x ≤ 0),(= x^2 - 2x + 1, "for"  x ≤ 0):}` then


Select the correct answer from the given alternative:

If, f(x) = `x^50/50 + x^49/49 + x^48/48 + .... +x^2/2 + x + 1`, thef f'(1) =


Find the values of p and q that make function f(x) differentiable everywhere on R

f(x) `{:( = 3 - x"," , "for"  x < 1),(= "p"x^2 + "q"x",", "for"  x ≥ 1):}`


Test whether the function f(x) `{:(= 2x - 3",", "for"  x ≥ 2),(= x - 1",", "for"  x < 2):}` is differentiable at x = 2


Test whether the function f(x) `{:(= 5x - 3x^2",", "for"  x ≥ 1),(= 3 - x",", "for"  x < 1):}` is differentiable at x = 1


If y = `"e"^x/sqrt(x)` find `("d"y)/("d"x)` when x = 1


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×