Advertisements
Advertisements
प्रश्न
Find the derivative of the following w. r. t. x. at the point indicated against them by using method of first principle:
`2^(3x + 1)` at x = 2
उत्तर
Let f(x) = `2^(3x + 1)`
∴ f(2) = `2^(3(2) + 1)` = 27 and
f(2 + h) = `2^(3(2 + "h") + 1) = 2^(3"h" + 7)`
By first principle, we get
f'(a) = `lim_("h" -> 0) ("f"("a" + "h") - "f"("a"))/"h"`
∴ f'(2) = `lim_("h" -> 0) ("f"(2 + "h") - "f"(2))/"h"`
= `lim_("h" -> 0) (2^(3"h" + 7) - 2^7)/"h"`
= `lim_("h" -> 0) (2^(3"h") * 2^7 - 2^7)/"h"`
= `lim_("h" -> 0) (2^7 (2^(3"h") - 1))/"h"`
= `2^7 lim_("h" -> 0) ((2^(3"h") - 1)/(3"h")) xx 3`
= `2^7 (log 2) xx 3 ...[lim_(x -> 0) (("a"^("p"x) - 1)/("p"x)) = log "a"]`
= 384 log 2
APPEARS IN
संबंधित प्रश्न
Find the derivative of the following functions w. r. t. x.:
`x^(3/2)`
Find the derivative of the following function w. r. t. x.:
`7xsqrt x`
Differentiate the following w. r. t. x.: x5 + 3x4
Differentiate the following w. r. t. x. : `x sqrtx + logx − e^x`
Differentiate the following w. r. t. x. : `sqrtx (x^2 + 1)^2`
Differentiate the following w. r. t. x. : x3 log x
Differentiate the following w. r. t. x. : `x^(5/2) e^x`
Differentiate the following w. r. t. x. : ex log x
Find the derivative of the following w. r. t. x by using method of first principle:
x2 + 3x – 1
Find the derivative of the following w. r. t. x by using method of first principle:
sin (3x)
Find the derivative of the following w. r. t. x by using method of first principle:
tan (2x + 3)
Find the derivative of the following w. r. t. x by using method of first principle:
sec (5x − 2)
Find the derivative of the following w. r. t. x by using method of first principle:
`x sqrt(x)`
Find the derivative of the following w. r. t. x. at the point indicated against them by using method of first principle:
`sqrt(2x + 5)` at x = 2
Find the derivative of the following w. r. t. x. at the point indicated against them by using method of first principle:
log(2x + 1) at x = 2
Find the derivative of the following w. r. t. x. at the point indicated against them by using method of first principle:
`"e"^(3x - 4)` at x = 2
Find the derivative of the following w. r. t. x. at the point indicated against them by using method of first principle:
cos x at x = `(5pi)/4`
Show that the function f is not differentiable at x = −3, where f(x) `{:(= x^2 + 2, "for" x < - 3),(= 2 - 3x, "for" x ≥ - 3):}`
Show that f(x) = x2 is continuous and differentiable at x = 0
Discuss the continuity and differentiability of f(x) = x |x| at x = 0
Discuss the continuity and differentiability of f(x) = (2x + 3) |2x + 3| at x = `- 3/2`
Discuss the continuity and differentiability of f(x) at x = 2
f(x) = [x] if x ∈ [0, 4). [where [*] is a greatest integer (floor) function]
Select the correct answer from the given alternative:
If y = `("a"x + "b")/("c"x + "d")`, then `("d"y)/("d"x)` =
Select the correct answer from the given alternative:
If f(x) `{:( = x^2 + sin x + 1, "for" x ≤ 0),(= x^2 - 2x + 1, "for" x ≤ 0):}` then
Select the correct answer from the given alternative:
If, f(x) = `x^50/50 + x^49/49 + x^48/48 + .... +x^2/2 + x + 1`, thef f'(1) =
Determine whether the following function is differentiable at x = 3 where,
f(x) `{:(= x^2 + 2"," , "for" x ≥ 3),(= 6x - 7"," , "for" x < 3):}`
Determine all real values of p and q that ensure the function
f(x) `{:( = "p"x + "q"",", "for" x ≤ 1),(= tan ((pix)/4)",", "for" 1 < x < 2):}` is differentiable at x = 1
Discuss whether the function f(x) = |x + 1| + |x – 1| is differentiable ∀ x ∈ R
Test whether the function f(x) `{:(= x^2 + 1",", "for" x ≥ 2),(= 2x + 1",", "for" x < 2):}` is differentiable at x = 2
Test whether the function f(x) `{:(= 5x - 3x^2",", "for" x ≥ 1),(= 3 - x",", "for" x < 1):}` is differentiable at x = 1
If y = `"e"^x/sqrt(x)` find `("d"y)/("d"x)` when x = 1