Advertisements
Advertisements
प्रश्न
Determine whether the following function is differentiable at x = 3 where,
f(x) `{:(= x^2 + 2"," , "for" x ≥ 3),(= 6x - 7"," , "for" x < 3):}`
उत्तर
f(x) `{:( = x^2 + 2"," , "for" x ≥ 3),(= 6x - 7"," , "for" x < 3):}`
Differentiability at x = 3
Lf'(3) = `lim_("h" -> 0^-) ("f"("h" + 3) - "f"(3))/"h"`
= `lim_("h" -> 0^-) (6("h" + 3) - 7 - (3^2 + 2))/"h"`
= `lim_("h" -> 0^-) (18 + "6h" - 7 - 11)/"h"`
= `lim_("h" -> 0^+) "6h"/"h"`
= `lim_("h" -> 0^+) 6 ...[∵ h → 0, ∴ h ≠ 0]`
Rf'(3) = `lim_("h" -> 0^+) ("f"("h" + 3) - "f"(3))/"h"`
= `lim_("h" -> 0^+) (("h" + 3)^2 + 2 - (3^2 + 2))/"h"`
= `lim_("h" -> 0^+) ("h"^2 + 6"h" + 9 + 2 - 11)/"h"`
= `lim_("h" -> 0^+) ("h"^2 + 6"h")/"h"`
= `lim_("h" -> 0^+) ("h" + 6) ...[∵ h → 0, ∴ h ≠ 0]`
= 6
∵ Lf'(3) = Rf'(3)
∴ f is differentiable at x = 3.
APPEARS IN
संबंधित प्रश्न
Find the derivative of the following function w.r.t. x.:
x–9
Find the derivative of the following functions w. r. t. x.:
`x^(3/2)`
Find the derivative of the following function w. r. t. x.:
`7xsqrt x`
Find the derivative of the following function w. r. t. x.:
35
Differentiate the following w. r. t. x.: x5 + 3x4
Differentiate the following w. r. t. x. : `x sqrtx + logx − e^x`
Differentiate the following w. r. t. x. : `x^(5/2) + 5x^(7/5)`
Differentiate the following w. r. t. x. : `sqrtx (x^2 + 1)^2`
Differentiate the following w. r. t. x. : x3 log x
Differentiate the following w. r. t. x. : `x^(5/2) e^x`
Differentiate the following w. r. t. x. : ex log x
Differentiate the following w. r. t. x. : x3 .3x
Find the derivative of the following w. r. t. x by using method of first principle:
sin (3x)
Find the derivative of the following w. r. t. x by using method of first principle:
3x
Find the derivative of the following w. r. t. x by using method of first principle:
log (2x + 5)
Find the derivative of the following w. r. t. x by using method of first principle:
tan (2x + 3)
Find the derivative of the following w. r. t. x by using method of first principle:
`x sqrt(x)`
Find the derivative of the following w. r. t. x. at the point indicated against them by using method of first principle:
log(2x + 1) at x = 2
Find the derivative of the following w. r. t. x. at the point indicated against them by using method of first principle:
`"e"^(3x - 4)` at x = 2
Show that the function f is not differentiable at x = −3, where f(x) `{:(= x^2 + 2, "for" x < - 3),(= 2 - 3x, "for" x ≥ - 3):}`
Show that f(x) = x2 is continuous and differentiable at x = 0
Discuss the continuity and differentiability of f(x) = x |x| at x = 0
Discuss the continuity and differentiability of f(x) at x = 2
f(x) = [x] if x ∈ [0, 4). [where [*] is a greatest integer (floor) function]
Test the continuity and differentiability of f(x) `{:(= 3 x + 2, "if" x > 2),(= 12 - x^2, "if" x ≤ 2):}}` at x = 2
If f(x) `{:(= sin x - cos x, "if" x ≤ pi/2),(= 2x - pi + 1, "if" x > pi /2):}` Test the continuity and differentiability of f at x = `π/2`
Select the correct answer from the given alternative:
If y = `("a"x + "b")/("c"x + "d")`, then `("d"y)/("d"x)` =
Select the correct answer from the given alternative:
If, f(x) = `x^50/50 + x^49/49 + x^48/48 + .... +x^2/2 + x + 1`, thef f'(1) =
Find the values of p and q that make function f(x) differentiable everywhere on R
f(x) `{:( = 3 - x"," , "for" x < 1),(= "p"x^2 + "q"x",", "for" x ≥ 1):}`
Determine all real values of p and q that ensure the function
f(x) `{:( = "p"x + "q"",", "for" x ≤ 1),(= tan ((pix)/4)",", "for" 1 < x < 2):}` is differentiable at x = 1
Discuss whether the function f(x) = |x + 1| + |x – 1| is differentiable ∀ x ∈ R
Test whether the function f(x) `{:(= 2x - 3",", "for" x ≥ 2),(= x - 1",", "for" x < 2):}` is differentiable at x = 2
Test whether the function f(x) `{:(= x^2 + 1",", "for" x ≥ 2),(= 2x + 1",", "for" x < 2):}` is differentiable at x = 2