मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

Show that the function f is not differentiable at x = −3, where f(x) = x2+2for x<-3=2-3xfor x≥-3 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Show that the function f is not differentiable at x = −3, where f(x) `{:(=  x^2 + 2, "for"  x < - 3),(= 2 - 3x, "for"  x ≥ - 3):}`

बेरीज

उत्तर

f(x) `{:(=  x^2 + 2, "for"  x < - 3),(= 2 - 3x, "for"  x ≥ - 3):}`

L f'(– 3) = `lim_("h" -> 0^-) ("f"(- 3 + "h") - "f"(- 3))/"h"`

= `lim_("h" -> 0^-) ([(- 3 + "h")^2 + 2] - [2 - 3(- 3)])/"h"`

=  `lim_("h" -> 0^-) (9 - 6"h" + "h"^2 + 2 - 11)/"h"`

= `lim_("h" -> 0^-) ("h"^2 - 6"h")/"h"`

= `lim_("h" -> 0^-) ("h" ("h" - 6))/"h"`

= `lim_("h" -> 0^-) ("h" - 6)`              ...[∵ h → 0, ∴ h ≠ 0]

= – 6

R f'(– 3) = `lim_("h" -> 0^+) ("f"(- 3 + "h") - "f"(- 3))/"h"`

= `lim_("h" -> 0^+) ([2 - 3 (- 3 + "h")] - [2 - 3 (- 3)])/"h"`

= `lim_("h" -> 0^+) ((11 - 3"h") - 11)/"h"`

= `lim_("h" -> 0^+) (-3"h")/"h"`

= `lim_("h" -> 0^+) (- 3)`                     ...[∵ h → 0, ∴ h ≠ 0]

= – 3

∴ L f'(– 3) ≠ R f'(– 3)

∴ f is not differentiable at x = – 3.

shaalaa.com
Definition of Derivative and Differentiability
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Differentiation - Exercise 9.1 [पृष्ठ १८८]

APPEARS IN

संबंधित प्रश्‍न

Find the derivative of the following function w.r.t. x.:

x–9


Find the derivative of the following functions w. r. t. x.:

`x^(3/2)`


Find the derivative of the following function w. r. t. x.:

`7xsqrt x`


Differentiate the following w. r. t. x. : `x sqrtx + logx − e^x`


Differentiate the following w. r. t. x. : `x^(5/2) + 5x^(7/5)`


Differentiate the following w. r. t. x. : `sqrtx (x^2 + 1)^2`


Differentiate the following w. r. t. x. : x3 log x


Differentiate the following w. r. t. x. : `x^(5/2) e^x`


Differentiate the following w. r. t. x. : ex log x


Find the derivative of the following w. r. t. x by using method of first principle:

x2 + 3x – 1


Find the derivative of the following w. r. t. x by using method of first principle:

sin (3x)


Find the derivative of the following w. r. t. x by using method of first principle:

e2x+1


Find the derivative of the following w. r. t. x by using method of first principle:

3x 


Find the derivative of the following w. r. t. x by using method of first principle:

tan (2x + 3)


Find the derivative of the following w. r. t. x by using method of first principle:

sec (5x − 2)


Find the derivative of the following w. r. t. x by using method of first principle:

`x sqrt(x)`


Find the derivative of the following w. r. t. x. at the point indicated against them by using method of first principle:

`sqrt(2x + 5)` at x = 2


Find the derivative of the following w. r. t. x. at the point indicated against them by using method of first principle:

tan x at x = `pi/4`


Find the derivative of the following w. r. t. x. at the point indicated against them by using method of first principle:

`2^(3x + 1)` at x = 2


Find the derivative of the following w. r. t. x. at the point indicated against them by using method of first principle:

log(2x + 1) at x = 2


Discuss the continuity and differentiability of f(x) = x |x| at x = 0


Discuss the continuity and differentiability of f(x) = (2x + 3) |2x + 3| at x = `- 3/2`


If f(x) `{:(= sin x - cos x, "if"  x ≤ pi/2),(= 2x - pi + 1, "if"  x > pi /2):}` Test the continuity and differentiability of f at x = `π/2`


Examine the function

f(x) `{:(= x^2 cos (1/x)",", "for"  x ≠ 0),(= 0",", "for"  x = 0):}`

for continuity and differentiability at x = 0


Select the correct answer from the given alternative:

If f(x) `{:(= 2x + 6, "for"  0 ≤ x ≤ 2),(= "a"x^2 + "b"x, "for"  2 < x ≤4):}` is differentiable at x = 2 then the values of a and b are


Determine whether the following function is differentiable at x = 3 where,

f(x) `{:(= x^2 + 2","  ,  "for"  x ≥ 3),(= 6x - 7"," ,  "for"  x < 3):}`


Discuss whether the function f(x) = |x + 1| + |x  – 1| is differentiable ∀ x ∈ R


Test whether the function f(x) `{:(= x^2 + 1",", "for"  x ≥ 2),(= 2x + 1",", "for"  x < 2):}` is differentiable at x = 2


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×