मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

Find the derivative of the following w. r. t. x by using method of first principle: sin (3x) - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the derivative of the following w. r. t. x by using method of first principle:

sin (3x)

बेरीज

उत्तर

Let f(x) = sin 3x

∴ f(x + h) = sin [3(x + h)] = sin (3x + 3h)

f(x + h) – f(x) = sin(3x + 3h) – sin 3x

= `2cos((3x + 3"h" + 3x)/2)*sin((3x + 3"h" - 3x)/2)`

= `2cos((6x + 3"h")/2)*sin ((3"h")/2)`

By definition,

f'(x) = `lim_("h"-> 0) ("f"(x + "h") - "f"(x))/"h"`

= `lim_("h" -> 0) (2cos((6x + 3"h")/2)*sin((3"h")/2))/ "h"`

= `lim_("h" -> 0) 2[cos ((6x + 3"h")/2)]*[(sin ((3"h")/2))/(((3"h")/2))] xx 3/2`

= `3[lim_("h" -> 0) cos((6x + 3"h")/2)] xx [lim_("h" -> 0) (sin((3"h")/2))/(((3"h")/2))]`

= `3[cos ((6x + 0)/2) ] xx 1   ...[because "h" -> 0"," (3"h")/2 -> 0  "and" lim_(theta-> 0) sintheta/theta = 1]`

 3 cos 3x

shaalaa.com
Definition of Derivative and Differentiability
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Differentiation - Exercise 9.1 [पृष्ठ १८७]

APPEARS IN

संबंधित प्रश्‍न

Find the derivative of the following function w.r.t. x.:

x–9


Find the derivative of the following functions w. r. t. x.:

`x^(3/2)`


Differentiate the following w. r. t. x.: x5 + 3x4


Differentiate the following w. r. t. x. : `x sqrtx + logx − e^x`


Differentiate the following w. r. t. x. : `x^(5/2) + 5x^(7/5)`


Differentiate the following w. r. t. x. : `2/7 x^(7/2) + 5/2 x^(2/5)`


Differentiate the following w. r. t. x. : `sqrtx (x^2 + 1)^2`


Differentiate the following w. r. t. x. : `x^(5/2) e^x`


Differentiate the following w. r. t. x. : ex log x


Differentiate the following w. r. t. x. : x3 .3x


Find the derivative of the following w. r. t. x by using method of first principle:

e2x+1


Find the derivative of the following w. r. t. x by using method of first principle:

3x 


Find the derivative of the following w. r. t. x by using method of first principle:

tan (2x + 3)


Find the derivative of the following w. r. t. x by using method of first principle:

sec (5x − 2)


Find the derivative of the following w. r. t. x by using method of first principle:

`x sqrt(x)`


Find the derivative of the following w. r. t. x. at the point indicated against them by using method of first principle:

`2^(3x + 1)` at x = 2


Find the derivative of the following w. r. t. x. at the point indicated against them by using method of first principle:

log(2x + 1) at x = 2


Find the derivative of the following w. r. t. x. at the point indicated against them by using method of first principle:

`"e"^(3x - 4)` at x = 2


Find the derivative of the following w. r. t. x. at the point indicated against them by using method of first principle:

cos x at x = `(5pi)/4`


Show that f(x) = x2 is continuous and differentiable at x = 0


Discuss the continuity and differentiability of f(x) = x |x| at x = 0


Discuss the continuity and differentiability of f(x) = (2x + 3) |2x + 3| at x = `- 3/2`


Examine the function

f(x) `{:(= x^2 cos (1/x)",", "for"  x ≠ 0),(= 0",", "for"  x = 0):}`

for continuity and differentiability at x = 0


Select the correct answer from the given alternative:

If y = `("a"x + "b")/("c"x + "d")`, then `("d"y)/("d"x)` =


Find the values of p and q that make function f(x) differentiable everywhere on R

f(x) `{:( = 3 - x"," , "for"  x < 1),(= "p"x^2 + "q"x",", "for"  x ≥ 1):}`


Determine the values of p and q that make the function f(x) differentiable on R where

f(x) `{:( = "p"x^3",", "for"  x < 2),(= x^2 + "q"",", "for"  x ≥ 2):}`


Determine all real values of p and q that ensure the function

f(x) `{:( = "p"x + "q"",", "for"  x ≤ 1),(= tan ((pix)/4)",", "for"  1 < x < 2):}` is differentiable at x = 1


Discuss whether the function f(x) = |x + 1| + |x  – 1| is differentiable ∀ x ∈ R


Test whether the function f(x) `{:(= x^2 + 1",", "for"  x ≥ 2),(= 2x + 1",", "for"  x < 2):}` is differentiable at x = 2


Test whether the function f(x) `{:(= 5x - 3x^2",", "for"  x ≥ 1),(= 3 - x",", "for"  x < 1):}` is differentiable at x = 1


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×