Advertisements
Advertisements
प्रश्न
Find the derivative of the following w. r. t. x by using method of first principle:
sin (3x)
उत्तर
Let f(x) = sin 3x
∴ f(x + h) = sin [3(x + h)] = sin (3x + 3h)
f(x + h) – f(x) = sin(3x + 3h) – sin 3x
= `2cos((3x + 3"h" + 3x)/2)*sin((3x + 3"h" - 3x)/2)`
= `2cos((6x + 3"h")/2)*sin ((3"h")/2)`
By definition,
f'(x) = `lim_("h"-> 0) ("f"(x + "h") - "f"(x))/"h"`
= `lim_("h" -> 0) (2cos((6x + 3"h")/2)*sin((3"h")/2))/ "h"`
= `lim_("h" -> 0) 2[cos ((6x + 3"h")/2)]*[(sin ((3"h")/2))/(((3"h")/2))] xx 3/2`
= `3[lim_("h" -> 0) cos((6x + 3"h")/2)] xx [lim_("h" -> 0) (sin((3"h")/2))/(((3"h")/2))]`
= `3[cos ((6x + 0)/2) ] xx 1 ...[because "h" -> 0"," (3"h")/2 -> 0 "and" lim_(theta-> 0) sintheta/theta = 1]`
3 cos 3x
APPEARS IN
संबंधित प्रश्न
Find the derivative of the following function w.r.t. x.:
x–9
Find the derivative of the following functions w. r. t. x.:
`x^(3/2)`
Differentiate the following w. r. t. x.: x5 + 3x4
Differentiate the following w. r. t. x. : `x sqrtx + logx − e^x`
Differentiate the following w. r. t. x. : `x^(5/2) + 5x^(7/5)`
Differentiate the following w. r. t. x. : `2/7 x^(7/2) + 5/2 x^(2/5)`
Differentiate the following w. r. t. x. : `sqrtx (x^2 + 1)^2`
Differentiate the following w. r. t. x. : `x^(5/2) e^x`
Differentiate the following w. r. t. x. : ex log x
Differentiate the following w. r. t. x. : x3 .3x
Find the derivative of the following w. r. t. x by using method of first principle:
e2x+1
Find the derivative of the following w. r. t. x by using method of first principle:
3x
Find the derivative of the following w. r. t. x by using method of first principle:
tan (2x + 3)
Find the derivative of the following w. r. t. x by using method of first principle:
sec (5x − 2)
Find the derivative of the following w. r. t. x by using method of first principle:
`x sqrt(x)`
Find the derivative of the following w. r. t. x. at the point indicated against them by using method of first principle:
`2^(3x + 1)` at x = 2
Find the derivative of the following w. r. t. x. at the point indicated against them by using method of first principle:
log(2x + 1) at x = 2
Find the derivative of the following w. r. t. x. at the point indicated against them by using method of first principle:
`"e"^(3x - 4)` at x = 2
Find the derivative of the following w. r. t. x. at the point indicated against them by using method of first principle:
cos x at x = `(5pi)/4`
Show that f(x) = x2 is continuous and differentiable at x = 0
Discuss the continuity and differentiability of f(x) = x |x| at x = 0
Discuss the continuity and differentiability of f(x) = (2x + 3) |2x + 3| at x = `- 3/2`
Examine the function
f(x) `{:(= x^2 cos (1/x)",", "for" x ≠ 0),(= 0",", "for" x = 0):}`
for continuity and differentiability at x = 0
Select the correct answer from the given alternative:
If y = `("a"x + "b")/("c"x + "d")`, then `("d"y)/("d"x)` =
Find the values of p and q that make function f(x) differentiable everywhere on R
f(x) `{:( = 3 - x"," , "for" x < 1),(= "p"x^2 + "q"x",", "for" x ≥ 1):}`
Determine the values of p and q that make the function f(x) differentiable on R where
f(x) `{:( = "p"x^3",", "for" x < 2),(= x^2 + "q"",", "for" x ≥ 2):}`
Determine all real values of p and q that ensure the function
f(x) `{:( = "p"x + "q"",", "for" x ≤ 1),(= tan ((pix)/4)",", "for" 1 < x < 2):}` is differentiable at x = 1
Discuss whether the function f(x) = |x + 1| + |x – 1| is differentiable ∀ x ∈ R
Test whether the function f(x) `{:(= x^2 + 1",", "for" x ≥ 2),(= 2x + 1",", "for" x < 2):}` is differentiable at x = 2
Test whether the function f(x) `{:(= 5x - 3x^2",", "for" x ≥ 1),(= 3 - x",", "for" x < 1):}` is differentiable at x = 1