Advertisements
Advertisements
प्रश्न
Differentiate the following w. r. t. x.: x5 + 3x4
उत्तर
Let y = x5 + 3x4
Differentiating w.r.t. x, we get
`dy/dx = d/dx (x^5+3x^4)`
= `d/dx x^5 + 3 d/dxx^4`
= 5x4 + 3(4x3)
`dy/dx = 5x^4 + 12x^3`
APPEARS IN
संबंधित प्रश्न
Find the derivative of the following function w. r. t. x.:
`7xsqrt x`
Differentiate the following w. r. t. x. : `x sqrtx + logx − e^x`
Differentiate the following w. r. t. x. : `x^(5/2) e^x`
Find the derivative of the following w. r. t. x by using method of first principle:
e2x+1
Find the derivative of the following w. r. t. x by using method of first principle:
log (2x + 5)
Find the derivative of the following w. r. t. x by using method of first principle:
`x sqrt(x)`
Find the derivative of the following w. r. t. x. at the point indicated against them by using method of first principle:
log(2x + 1) at x = 2
Show that the function f is not differentiable at x = −3, where f(x) `{:(= x^2 + 2, "for" x < - 3),(= 2 - 3x, "for" x ≥ - 3):}`
Discuss the continuity and differentiability of f(x) = (2x + 3) |2x + 3| at x = `- 3/2`
Select the correct answer from the given alternative:
If y = `("a"x + "b")/("c"x + "d")`, then `("d"y)/("d"x)` =
Select the correct answer from the given alternative:
If f(x) `{:(= 2x + 6, "for" 0 ≤ x ≤ 2),(= "a"x^2 + "b"x, "for" 2 < x ≤4):}` is differentiable at x = 2 then the values of a and b are
Select the correct answer from the given alternative:
If, f(x) = `x^50/50 + x^49/49 + x^48/48 + .... +x^2/2 + x + 1`, thef f'(1) =
Determine whether the following function is differentiable at x = 3 where,
f(x) `{:(= x^2 + 2"," , "for" x ≥ 3),(= 6x - 7"," , "for" x < 3):}`
Determine the values of p and q that make the function f(x) differentiable on R where
f(x) `{:( = "p"x^3",", "for" x < 2),(= x^2 + "q"",", "for" x ≥ 2):}`
Test whether the function f(x) `{:(= 2x - 3",", "for" x ≥ 2),(= x - 1",", "for" x < 2):}` is differentiable at x = 2
Test whether the function f(x) `{:(= 5x - 3x^2",", "for" x ≥ 1),(= 3 - x",", "for" x < 1):}` is differentiable at x = 1