Advertisements
Advertisements
प्रश्न
Differentiate the following w. r. t. x. : `sqrtx (x^2 + 1)^2`
उत्तर
Let y = `sqrtx (x^2 + 1)^2`
∴ `y = x^(1/2) (x^4 + 2x^2 + 1)`
y = `x^(9/2) + 2x^(5/2) + x^(1/2)`
Differentiating w.r.t. x, we get
`dy/dx = d/dx (x^(9/2) + 2x^(5/2) + x^(1/2))`
= `d/dx x^(9/2) + 2d/dxx^(5/2) + d/dxsqrtx`
= `9/2 x^(9/2-1) + 2xx 5/2 x^(5/2-1)+1/(2sqrtx)`
= `9/2 x^(7/2) + 5x^(3/2) + 1/(2sqrtx)`
APPEARS IN
संबंधित प्रश्न
Find the derivative of the following function w.r.t. x.:
x–9
Find the derivative of the following functions w. r. t. x.:
`x^(3/2)`
Find the derivative of the following function w. r. t. x.:
35
Find the derivative of the following w. r. t. x by using method of first principle:
x2 + 3x – 1
Find the derivative of the following w. r. t. x by using method of first principle:
e2x+1
Find the derivative of the following w. r. t. x by using method of first principle:
log (2x + 5)
Find the derivative of the following w. r. t. x by using method of first principle:
tan (2x + 3)
Find the derivative of the following w. r. t. x by using method of first principle:
sec (5x − 2)
Find the derivative of the following w. r. t. x by using method of first principle:
`x sqrt(x)`
Show that the function f is not differentiable at x = −3, where f(x) `{:(= x^2 + 2, "for" x < - 3),(= 2 - 3x, "for" x ≥ - 3):}`
Discuss the continuity and differentiability of f(x) = (2x + 3) |2x + 3| at x = `- 3/2`
Discuss the continuity and differentiability of f(x) at x = 2
f(x) = [x] if x ∈ [0, 4). [where [*] is a greatest integer (floor) function]
Examine the function
f(x) `{:(= x^2 cos (1/x)",", "for" x ≠ 0),(= 0",", "for" x = 0):}`
for continuity and differentiability at x = 0
Select the correct answer from the given alternative:
If f(x) `{:(= 2x + 6, "for" 0 ≤ x ≤ 2),(= "a"x^2 + "b"x, "for" 2 < x ≤4):}` is differentiable at x = 2 then the values of a and b are
Select the correct answer from the given alternative:
If f(x) `{:( = x^2 + sin x + 1, "for" x ≤ 0),(= x^2 - 2x + 1, "for" x ≤ 0):}` then
Determine the values of p and q that make the function f(x) differentiable on R where
f(x) `{:( = "p"x^3",", "for" x < 2),(= x^2 + "q"",", "for" x ≥ 2):}`
Determine all real values of p and q that ensure the function
f(x) `{:( = "p"x + "q"",", "for" x ≤ 1),(= tan ((pix)/4)",", "for" 1 < x < 2):}` is differentiable at x = 1
Discuss whether the function f(x) = |x + 1| + |x – 1| is differentiable ∀ x ∈ R
Test whether the function f(x) `{:(= 5x - 3x^2",", "for" x ≥ 1),(= 3 - x",", "for" x < 1):}` is differentiable at x = 1