मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

Discuss whether the function f(x) = |x + 1| + |x – 1| is differentiable ∀ x ∈ R - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Discuss whether the function f(x) = |x + 1| + |x  – 1| is differentiable ∀ x ∈ R

बेरीज

उत्तर

f(x) = |x + 1| + |x – 1|

= – (1 + x) + (1 – x),   x < – 1

= 1 + x + 1 – x,       –1 ≤ x < 1

= x + 1 + x – 1,         x ≥ 1

i.e., f(x) `{:(= - 2x",", x < -1),(= 2",", -1 ≤ x < 1),(= 2x",", x ≥ 1):}`

Differentiability at x = – 1:

Lf'(– 1) = `lim_("h" -> 0^-) ("f"(- 1 + "h") - "f"(- 1))/"h"`

= `lim_("h" -> 0^-) (-2(-1 + "h") - (2))/"h"`

= `lim_("h" -> 0^-) ((-2"h")/"h") = -2`

 Rf'(– 1) = `lim_("h" -> 0^+) ("f"(-1 + "h") - "f"(-1))/"h"`

= `lim_("h" -> 0^+) (2 - 2)/"h"` = 0

∵ Lf'(– 1) ≠ Rf'(– 1)

∴ f is not differentiable at x = – 1

Differentiability at x = 1:

Lf'(1) = `lim_("h" -> 0^-) ("f"(1 + "h") - "f"(1))/"h"`

= `lim_("h" -> 0^-) (2 - 2)/"h"` = 0

Rf'(1) = `lim_("h" -> 0^+) ("f"(1 + "h") - "f"(1))/"h"`

= `lim_("h" -> 0^+) (2(1 + "h") - (2))/"h"`

= `lim_("h" -> 0^-) ((2"h")/"h")` = 2

∵ Lf'(1) ≠ Rf'(1)

∴ f is not differentiable at x = 1.

∴ f is not differentiable at x = – 1 and x = 1

∴ and not differentiable  ∀ x ∈ R.

shaalaa.com
Definition of Derivative and Differentiability
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Differentiation - Miscellaneous Exercise 9 [पृष्ठ १९५]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
पाठ 9 Differentiation
Miscellaneous Exercise 9 | Q II. (5) | पृष्ठ १९५

संबंधित प्रश्‍न

Find the derivative of the following function w.r.t. x.:

x–9


Find the derivative of the following functions w. r. t. x.:

`x^(3/2)`


Find the derivative of the following function w. r. t. x.:

`7xsqrt x`


Find the derivative of the following function w. r. t. x.:

35


Differentiate the following w. r. t. x. : `x sqrtx + logx − e^x`


Differentiate the following w. r. t. x. : `sqrtx (x^2 + 1)^2`


Differentiate the following w. r. t. x. : `x^(5/2) e^x`


Differentiate the following w. r. t. x. : ex log x


Find the derivative of the following w. r. t. x by using method of first principle:

x2 + 3x – 1


Find the derivative of the following w. r. t. x by using method of first principle:

e2x+1


Find the derivative of the following w. r. t. x by using method of first principle:

3x 


Find the derivative of the following w. r. t. x by using method of first principle:

sec (5x − 2)


Find the derivative of the following w. r. t. x. at the point indicated against them by using method of first principle:

`2^(3x + 1)` at x = 2


Find the derivative of the following w. r. t. x. at the point indicated against them by using method of first principle:

cos x at x = `(5pi)/4`


Show that the function f is not differentiable at x = −3, where f(x) `{:(=  x^2 + 2, "for"  x < - 3),(= 2 - 3x, "for"  x ≥ - 3):}`


Show that f(x) = x2 is continuous and differentiable at x = 0


Discuss the continuity and differentiability of f(x) = x |x| at x = 0


Discuss the continuity and differentiability of f(x) = (2x + 3) |2x + 3| at x = `- 3/2`


Discuss the continuity and differentiability of f(x) at x = 2

f(x) = [x] if x ∈ [0, 4). [where [*] is a greatest integer (floor) function]


If f(x) `{:(= sin x - cos x, "if"  x ≤ pi/2),(= 2x - pi + 1, "if"  x > pi /2):}` Test the continuity and differentiability of f at x = `π/2`


Examine the function

f(x) `{:(= x^2 cos (1/x)",", "for"  x ≠ 0),(= 0",", "for"  x = 0):}`

for continuity and differentiability at x = 0


Select the correct answer from the given alternative:

If y = `("a"x + "b")/("c"x + "d")`, then `("d"y)/("d"x)` =


Select the correct answer from the given alternative:

If f(x) `{:(= 2x + 6, "for"  0 ≤ x ≤ 2),(= "a"x^2 + "b"x, "for"  2 < x ≤4):}` is differentiable at x = 2 then the values of a and b are


Select the correct answer from the given alternative:

If f(x) `{:( = x^2 + sin x + 1, "for"  x ≤ 0),(= x^2 - 2x + 1, "for"  x ≤ 0):}` then


Select the correct answer from the given alternative:

If, f(x) = `x^50/50 + x^49/49 + x^48/48 + .... +x^2/2 + x + 1`, thef f'(1) =


Determine whether the following function is differentiable at x = 3 where,

f(x) `{:(= x^2 + 2","  ,  "for"  x ≥ 3),(= 6x - 7"," ,  "for"  x < 3):}`


Find the values of p and q that make function f(x) differentiable everywhere on R

f(x) `{:( = 3 - x"," , "for"  x < 1),(= "p"x^2 + "q"x",", "for"  x ≥ 1):}`


Determine the values of p and q that make the function f(x) differentiable on R where

f(x) `{:( = "p"x^3",", "for"  x < 2),(= x^2 + "q"",", "for"  x ≥ 2):}`


Test whether the function f(x) `{:(= 5x - 3x^2",", "for"  x ≥ 1),(= 3 - x",", "for"  x < 1):}` is differentiable at x = 1


If y = `"e"^x/sqrt(x)` find `("d"y)/("d"x)` when x = 1


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×