Advertisements
Advertisements
प्रश्न
Draw a circle of radius 4 cm. Construct a pair of tangents to it, the angle between which is 60º. Also justify the construction. Measure the distance between the centre of the circle and the point of intersection of tangents.
उत्तर
In order to draw the pair of tangents, we follow the following steps:
Steps of construction:
- Take a point O on the plane of the paper and draw a circle of radius OA = 4 cm.
- Produce OA to B such that OA = AB = 4 cm.
- Taking A as the centre draw a circle of radius AO = AB = 4 cm. Suppose it cuts the circle drawn in step 1 at P and Q.
- Join BP and BQ to get desired tangents.
Justification:
In ∆OAP, we have
OA = OP = 4 cm ...(∵ Radius)
Also, AP = 4 cm ...(∵ Radius of circle with centre A)
∴ ∆OAP is equilateral
⇒ ∠PAO = 60°
⇒ ∠BAP = 120°
In ∆BAP, we have
BA = AP and ∠BAP = 120°
∴ ∠ABP = ∠APB = 30°
⇒ ∠PBQ = 60°
APPEARS IN
संबंधित प्रश्न
Draw a circle of radius 4 cm. Draw two tangents to the circle inclined at an angle of 60° to each other.
Construct a tangent to a circle of radius 4 cm from a point on the concentric circle of radius 6 cm and measure its length. Also verify the measurement by actual calculation.
Draw a pair of tangents to a circle of radius 5 cm which are inclined to each other an angle of 60º.
Draw a circle of diameter 9 cm. Mark a point at a distance of 7.5 cm from the centre of the circle. Draw tangents to the given circle from this exterior point. Measure the length of each tangent.
Draw a circle of radius 5 cm. Draw two tangents to this circle so that the angle between the tangents is 45°.
Draw a circle with center O and radius 4 cm. Draw any diameter AB of this circle. Construct tangents to the circle at each of the two end points of the diameter AB.
Draw a circle of radius 4 cm and take a point Pon its circumference. Construct a tangent to the circle at P.
Draw two circles of radii 2.5 cm and 3.5 cm respectively so that their centres are 8 cm apart. Draw direct comm on tangents to the circle.
A circle of radius r has a center O. What is first step to construct a tangent from a generic point P which is at a distance r from O?
Construct a pair of tangents to a circle of radius 4 cm from a point P lying outside the circle at a distance of 6 cm from the centre.