Advertisements
Advertisements
प्रश्न
एक नाणे व एक फासा एकाच वेळी फेकले असता खालील घटनाची संभाव्यता काढा:
घटना B: काटा व विषम संख्या मिळणे अशी आहे.
उत्तर
नमुना अवकाश,
S = {(H, 1), (H, 2), (H, 3), (H, 4), (H, 5), (H, 6), (T, 1), (T, 2), (T, 3), (T, 4), (T, 5), (T, 6)}
∴ n(S) = 12
घटना B: काटा व विषम संख्या मिळणे अशी आहे.
∴ B = {(T, 1), (T, 3), (T, 5)}
∴ n(B) = 3
∴ P(B) = `("n"("B"))/("P"("B"))`
∴ P(B) = `3/12`
∴ P(B) = `1/4`
APPEARS IN
संबंधित प्रश्न
योग्य रीतीने पिसलेल्या 52 पत्त्यांच्या कॅटमधून एक पत्ता यादृच्छिक पद्धतीने काढला, तर तो इस्पिकचा असणे या घटनेची संभाव्यता काढा.
दोन नाणी एकाच वेळी फेकली असता, दोन्ही नाण्यांवर छाप मिळणे या घटनेची संभाव्यता काढा.
एका खोक्यात 5 स्ट्रॉबेरीची, 6 कॉफीची व 2 पेपरमिंटची चॉकलेट्स आहेत. त्या खोक्यातील एक चॉकलेट काढले, तर खालील घटनांची संभाव्यता काढण्यासाठी कृती पूर्ण करा.
घटना A: काढलेले चॉकलेट कॉफीचे असणे.
घटना B: काढलेले चॉकलेट पेपरमिंटचे असणे.
कृती: समजा, नमुना अवकाश 'S’ आहे.
∴ n(S) = 5 + 6 + 2 = 13
घटना A : काढलेले चॉकलेट कॉफीचे असणे.
∴ n(A) = `square`
∴ P(A) = `square/("n"("S"))` ............[सूत्र]
P(A) = `square/13`
घटना B: काढलेले चॉकलेट पेपरमिंटचे असणे.
∴ n(B) = `square`
∴ P(B) = `square/("n"("S"))` ............[सूत्र]
P(B) = `square/13`
तीन नाणी एकाचवेळी फेकली असता, पुढील घटनांची संभाव्यता काढा.
i) घटना A: एकही छापा न मिळणे.
ii) घटना B: कमीत कमी दोन छाप मिळणे.
दोन फासे एकाच वेळी टाकले असता खालील घटनाची संभाव्यता काढा.
पहिल्या फाशावरील अंक दुसऱ्या फाशावरील अंकापेक्षा मोठा असणे.
एका पेटीत 15 तिकिटे आहेत. प्रत्येक तिकिटावर 1 ते 15 पैकी एक संख्या लिहिलेली आहे. त्या पेटीतून एक तिकीट यादृच्छिक पद्धतीने काढले, तर तिकिटावरची संख्या ५ च्या पटीत असणे, या घटनांची संभाव्यता काढा.
प्रत्येक कार्डावर एक संख्या, याप्रमाणे 1 ते 40 या संख्या लिहिलेली 40 कार्डे एका पिशवीत आहेत. त्यांपैकी एक कार्ड उचलले असता त्या कार्डावरची संख्या 5 च्या पटीत असण्याची संभाव्यता ______ असेल.
एका हॉकी संघात 6 बचाव करणारे, 4 आक्रमक व एक गोलरक्षक असे खेळाडू आहेत. यादृच्छिक पद्धतीने त्यांतील एक खेळाडू संघनायक म्हणून निवडायचा आहे, तर खालील घटनाची संभाव्यता काढा.
बचाव करणारा खेळाडू संघनायक असणे.
एका खोक्यात 30 तिकिटे आहेत. प्रत्येक तिकिटावर 1 ते 30 पैकी एकच संख्या लिहिली आहे. त्यांतून कोणतेही एक तिकीट यादृच्छिक पद्धतीने काढले, तर खालील घटनाची संभाव्यता काढा.
तिकिटावरील संख्या पूर्ण वर्ग असणे.
एक फासा टाकला असता वरच्या पृष्ठभागावर मूळ संख्या मिळण्याची संभाव्यता काढण्याची कृती पूर्ण करून लिहा.
कृती:
एक फासा टाकला असता नमुना अवकाश 'S' आहे.
S = `{square}`
∴ n(S) = 6
घटना A: वरच्या पृष्ठभागावर मूळ संख्या मिळणे.
A = `{square}`
∴ n(A) = 3
∴ P(A) = `square/("n"("S"))` ............(सूत्र)
∴ P(A) = `square`