Advertisements
Advertisements
प्रश्न
एक सिक्का तथा एक पाँसा एक साथ उछाले गये, तो निम्न घटना की संभाव्यता ज्ञात कीजिये:
घटना A: चित तथा अभाज्य संख्या मिलना।
उत्तर
नमूना अवकाश,
S = {(H, 1), (H, 2), (H, 3), (H, 4), (H, 5), (H, 6),
(T, 1), (T, 2), (T, 3), (T, 4), (T, 5), (T, 6)}
∴ n(S) = 12
घटना A: चित तथा अभाज्य संख्या मिलना।
∴ A = {(H, 2), (H, 3), (H, 5)}
∴ n(A) = 3
∴ P(A) = `("n"("A"))/("n"("S"))`
∴ P(A) = `3/12`
∴ P(A) = `1/4`
APPEARS IN
संबंधित प्रश्न
दो पाँसे एक ही समय फेंकने पर निम्नलिखित घटनाओं की संभाव्यता ज्ञात कीजिए।
पृष्ठभागों पर आने वाली संख्याओं का योगफल 33 है।
अंकों की पुनरावृत्ति न करते हुए 2, 3, 5, 7, 9 अंकों से दो अंकों वाली संख्या बनायी गई हो तो निम्नलिखित घटनाओं की संभाव्यता ज्ञात कीजिए।
वह संख्या विषम हो।
अंकों की पुनरावृत्ति न करते हुए 2, 3, 5, 7, 9 अंकों से दो अंकों वाली संख्या बनायी गई हो तो निम्नलिखित घटनाओं की संभाव्यता ज्ञात कीजिए।
वह संख्याएँ 5 की गुणज हो।
एक पाँसा फेकने पर ऊपरी पृष्ठभाग पर 3 से कम संख्या आने की संभाव्यता __________ होती है।
प्रत्येक कार्ड पर एक संख्या इस प्रकार 1 से 40 यह संख्या लिखी गई है। 40 कार्ड थैली में हैं। इनमे से एक कार्ड निकाला गया उस कार्ड की संख्या 5 के गुणज मेंं रहने की संभाव्यता __________ होगी।
एक पाँसे के छह पृष्ठभाग निम्न प्रकार से हैं।
यह पाँसा एक बार फेंकने पर दी गई घटनाओं की संभाव्यता ज्ञात कीजिए।
ऊपरी पृष्ठभाग पर ‘D’ मिलना।
किसी बक्से मेंं 30 टिकट हैं। प्रत्येक टिकट पर 1 से 30 मेंं से एक ही संख्या लिखी गई है। इसमेंं से कोई एक टिकट यादृच्छिक पद्धति से निकाला गया तो निम्न घटनाओं की संभाव्यता ज्ञात कीजिए।
टिकट पर विषम संख्या मिलने पर।
प्रत्येक कार्डपर एक इस प्रकार से 0 से 5 यह पूर्णांक संख्याएँ लिखकर बने छह कार्ड बक्से मेंं रखे गए हैं। निम्नलिखित प्रत्येक घटनाओं की संभाव्यता ज्ञात कीजिए।
निकाले गए कार्ड की संख्या पूर्ण संख्या हो।
0, 1, 2, 3, 4 इन अंकों की सहायता से दो अंकोंवाली संख्या बनानी है। अंकों की पुनरावृत्ति की जा सकती हो तो निम्न घटनाओं की संभाव्यता ज्ञात कीजिए।
वह संख्या अभाज्य संख्या होगी।
किसी पाँसे के पृष्ठभाग पर 0, 1, 2, 3, 4, 5 यह अंक हैं। इस पाँसे को दो बार फेंकने पर ऊपरी पृष्ठभाग पर मिलने वाले अंकों का गुणनफल शून्य होने की संभाव्यता ज्ञात करें।