मराठी

एक त्रिभुज की भुजाओं के मध्य-बिंदु किसी भी एक शीर्ष को चौथा बिंदु लेकर एक समांतर चतुर्भुज बनाते हैं, जिसका क्षेत्रफल बराबर है - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

एक त्रिभुज की भुजाओं के मध्य-बिंदु किसी भी एक शीर्ष को चौथा बिंदु लेकर एक समांतर चतुर्भुज बनाते हैं, जिसका क्षेत्रफल बराबर है

पर्याय

  • `1/2` ar (ABC)

  • `1/3` ar (ABC)

  • `1/4` ar (ABC)

  • ar (ABC)

MCQ

उत्तर

`bb(1/2 ar  (ABC))`

स्पष्टीकरण -

दिया गया है - ABCD एक त्रिभुज है।

किसी भी शीर्ष के साथ ΔABC की भुजाओं के मध्य बिंदु एक समांतर चतुर्भुज बनाते हैं।

ज्ञात करना है - समांतर चतुर्भुज का क्षेत्रफल

गणना - हम जानते हैं कि समांतर चतुर्भुज का क्षेत्रफल = आधार × ऊँचाई


अतः || का क्षेत्र gm DECF = EC × EG

|| का क्षेत्र gm DECF = EC × EG

|| का क्षेत्र gm DECF = `1/2 BC xx 1/2 AE`   ...(E, BC का मध्यबिंदु है।)

|| का क्षेत्र gm DECF = `1/2(1/2 BC xx AE)`

|| का क्षेत्र gm DECF = `1/2(ar (ΔABC)` 

shaalaa.com
एक ही आधार पर और एक ही समांतर रेखाओं के बीच आकृतियाँ
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: समांतर चतुर्भुजों और त्रिभुजों के क्षेत्रफल - प्रश्नावली 9.1 [पृष्ठ ८८]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 9
पाठ 9 समांतर चतुर्भुजों और त्रिभुजों के क्षेत्रफल
प्रश्नावली 9.1 | Q 6. | पृष्ठ ८८

संबंधित प्रश्‍न

यदि E, F, G और H क्रमशः एक समांतर चतुर्भुज ABCD की भुजाओं के मध्य-बिंदु हैं, तो दर्शाइए कि ar (EFGH) = `1/2`ar (ABCD) हैं


D, E और F क्रमशः ΔABC की भुजाओं BC, CA और AB के मध्य-बिंदु हैं। वो दिखाओ

(i) BDEF एक समांतर चतुर्भुज है।

(ii) ar (DEF) = `1/4`ar (ABC)

(iii) ar (BDEF) = `1/2`ar (ABC)


XY त्रिभुज ABC की भुजा BC के समांतर एक रेखा है | यदि BE || AC और CF || AB रेखा XY से क्रमश: E और F पर मिलती है, तो दर्शाइए कि:

ar(ABE) = ar(ACF)


आकृति में, भुजा BC पर दो बिंदु D और E  इस प्रकार स्थित हैं कि BD = DE = EC है। दर्शाइए कि ar (ABD) = ar (ADE) = ar (AEC) है।

क्या आप इस प्रश्न का उत्तर दे सकते हैं कि आपने इस अध्याय के 'परिचय' में छोड़ दिया है कि "क्या बुधिया के खेत को वास्तव में बराबर क्षेत्रफल के तीन भागों में बांटा गया है"?

[टिप्पणी: ध्यान दें कि BD = DE = EC लेने पर त्रिभुज ABC को बराबर क्षेत्रफलों वाले तीन त्रिभुज ABD, ADE और AEC में विभाजित किया जाता है। इसी तरह, BC को n समान भागों में विभाजित करके और इस प्रकार प्राप्त विभाजन बिंदुओं को BC के विपरीत शीर्ष से जोड़कर, आप ΔABC को समान क्षेत्रफल वाले n त्रिभुजों में विभाजित कर सकते हैं।]


निम्नलिखित आकृतियों में से किसमें आप एक ही आधार पर और एक ही समांतर रेखाओं के बीच, बने दो बहुभुज प्राप्त करते हैं :


8 cm और 6 cm भुजाओं वाले एक आयत की आसन्न भुजाओं के मध्य-बिंदुओं को मिलाने से बनी आकृति है :


ABCD एक चतुर्भुज है जिसका विकर्ण AC उसे बराबर क्षेत्रफल वाले दो भागों में विभाजित करता है। तब, ABCD ______।


समांतर चतुर्भुज ABCD का क्षेत्रफल 90 cm2 है (आकृति)। ज्ञात कीजिए :

  1. ar (ABEF) 
  2. ar (ABD) 
  3. ar (BEF) 


समांतर चतुर्भुज ABCD का क्षेत्रफल 90 cm2 है। ज्ञात कीजिए :

ar (ΔABD)


एक समलंब ABCD में, AB || DC है तथा L भुजा BC का मध्य-बिंदु है। L से होकर, एक रेखा PQ || AD खींची गई है, जो AB को P पर और बढ़ाई गई DC को Q पर मिलती है (आकृति), सिद्ध कीजिए ar (ABCD) = ar (APQD)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×