मराठी

समांतर चतुर्भुज ABCD का क्षेत्रफल 90 cm2 है (आकृति)। ज्ञात कीजिए : ar (ABEF) ar (ABD) ar (BEF) - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

समांतर चतुर्भुज ABCD का क्षेत्रफल 90 cm2 है (आकृति)। ज्ञात कीजिए :

  1. ar (ABEF) 
  2. ar (ABD) 
  3. ar (BEF) 

बेरीज

उत्तर

दिया गया है, समांतर चतुर्भुज का क्षेत्रफल, ABCD = 90 cm2

i. हम जानते हैं कि, समान आधार और समान समांतर रेखाओं के बीच बने समांतर चतुर्भुज क्षेत्रफल में बराबर होते हैं।

यहाँ, समान्तर चतुर्भुज ABCD और ABEF एक ही आधार AB पर और एक ही समांतर रेखाओं AB और CF के बीच हैं। 

तो, ar (ΔBEF) = ar (ABCD) = 90 सेमी

ii. हम जानते हैं कि, यदि एक त्रिभुज और एक समांतर चतुर्भुज एक ही आधार पर और एक ही समांतर रेखाओं के बीच हों, तो त्रिभुज का क्षेत्रफल समांतर चतुर्भुज के क्षेत्रफल के आधे के बराबर होता है।

यहाँ, ΔABD और समांतर चतुर्भुज ABCD एक ही आधार AB पर और एक ही समांतर रेखाओं AB और CD के बीच हैं।

तो, ar (ΔABD) = `1/2` ar (ABCD)

= `1/2 xx 90`  ...[∴ ar (ABCD) = 90 सेमी2

= 45 सेमी2 

iii. यहाँ, ABEF और समांतर चतुर्भुज ABEF एक ही आधार EF पर और एक ही  समांतर रेखाओं AB और EF के बीच हैं।

ar (ΔBEF) = `1/2` ar (ABEF) 

= `1/2 xx 90`  ...[∴ ar (ABEF) = 90 cm2, भाग (i) से]

= 45 cm2 

shaalaa.com
एक ही आधार पर और एक ही समांतर रेखाओं के बीच आकृतियाँ
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: समांतर चतुर्भुजों और त्रिभुजों के क्षेत्रफल - प्रश्नावली 9.3 [पृष्ठ ९१]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 9
पाठ 9 समांतर चतुर्भुजों और त्रिभुजों के क्षेत्रफल
प्रश्नावली 9.3 | Q 3. | पृष्ठ ९१

संबंधित प्रश्‍न

दी गई आकृति में, ABCD एक समांतर चतुर्भुज है, AE ⊥ DC और CF ⊥ AD है। यदि AB = 16 सेमी, AE = 8 सेमी और CF = 10 सेमी है, तो AD ज्ञात कीजिए।


निम्नलिखित आकृति में, यदि समांतर चतुर्भुज ABCD और आयत ABEM समान क्षेत्रफल के हैं, तो ______।


एक त्रिभुज की भुजाओं के मध्य-बिंदु किसी भी एक शीर्ष को चौथा बिंदु लेकर एक समांतर चतुर्भुज बनाते हैं, जिसका क्षेत्रफल बराबर है


ABCD एक चतुर्भुज है जिसका विकर्ण AC उसे बराबर क्षेत्रफल वाले दो भागों में विभाजित करता है। तब, ABCD ______।


ABCD एक समलंब है जिसकी समांतर भुजाएँ AB = a cm और DC = b cm है (आकृति)। E और F असमांतर भुजाओं के मध्य-बिंदु हैं। ar (ABFE) और ar (EFCD) का अनुपात हैं


निम्नलिखित आकृति में, ABCD और EFGD समांतर चतुर्भुज हैं तथा G भुजा CD का मध्य-बिंदु है। तब, ar (DPC) = `1/2` ar (EFGD) है। 


X और Y त्रिभुज LMN की भुजा LN पर स्थित दो बिंदु इस प्रकार हैं कि LX = XY = YN हैं। X से होकर जाती हुई एक रेखा LM के समांतर खींची गई जो MN को Z पर मिलती है। (देखिए आकृति)। सिद्ध कीजिए कि ar (LZY) = ar (MZYX) है।


समांतर चतुर्भुज ABCD का क्षेत्रफल 90 cm2 है। ज्ञात कीजिए :

ar (ΔABD)


O एक समांतर चतुर्भुज PQRS के विकर्ण PR पर स्थित कोई बिंदु है (आकृति)। सिद्ध कीजिए कि ar (PSO) = ar (PQO) है।


एक समलंब ABCD में, AB || DC है तथा L भुजा BC का मध्य-बिंदु है। L से होकर, एक रेखा PQ || AD खींची गई है, जो AB को P पर और बढ़ाई गई DC को Q पर मिलती है (आकृति), सिद्ध कीजिए ar (ABCD) = ar (APQD)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×