Advertisements
Advertisements
प्रश्न
XY त्रिभुज ABC की भुजा BC के समांतर एक रेखा है | यदि BE || AC और CF || AB रेखा XY से क्रमश: E और F पर मिलती है, तो दर्शाइए कि:
ar(ABE) = ar(ACF)
उत्तर
दिया जाता है कि
XY || BC ⇒ EY || BC
BE || AC ⇒ BE || CY
अत: EBCY एक समांतर चतुर्भुज है।दिया जाता है कि
XY || BC ⇒ XF || BC
FC || AB ⇒ FC || XB
अत: BCFX एक समांतर चतुर्भुज है।
समांतर चतुर्भुज EBCY और BCFX एक ही आधार BC पर और समान समांतर रेखाओं BC और EF के बीच स्थित हैं।
∴ क्षेत्रफल (EBCY) = क्षेत्रफल (BCFX) ... (1)
समांतर चतुर्भुज EBCY और AEB पर विचार करें
ये एक ही आधार BE पर स्थित हैं और एक ही समान्तर रेखाओं BE और AC के बीच स्थित हैं।
∴ क्षेत्रफल (ΔABE) = 1/2 क्षेत्रफल (EBCY) ... (2)
साथ ही, समांतर चतुर्भुज BCFX और ΔACF एक ही आधार CF पर और समान समांतर रेखाओं CF और AB के बीच स्थित हैं।
∴ क्षेत्रफल (ΔACF) = 1/2 क्षेत्रफल (BCFX) ... (3)
समीकरण (1), (2), और (3) से, हम प्राप्त करते हैं
क्षेत्रफल (ΔABE) = क्षेत्रफल (ΔACF)
APPEARS IN
संबंधित प्रश्न
यदि E, F, G और H क्रमशः एक समांतर चतुर्भुज ABCD की भुजाओं के मध्य-बिंदु हैं, तो दर्शाइए कि ar (EFGH) = `1/2`ar (ABCD) हैं
D, E और F क्रमशः ΔABC की भुजाओं BC, CA और AB के मध्य-बिंदु हैं। वो दिखाओ
(i) BDEF एक समांतर चतुर्भुज है।
(ii) ar (DEF) = `1/4`ar (ABC)
(iii) ar (BDEF) = `1/2`ar (ABC)
8 cm और 6 cm भुजाओं वाले एक आयत की आसन्न भुजाओं के मध्य-बिंदुओं को मिलाने से बनी आकृति है :
एक त्रिभुज की भुजाओं के मध्य-बिंदु किसी भी एक शीर्ष को चौथा बिंदु लेकर एक समांतर चतुर्भुज बनाते हैं, जिसका क्षेत्रफल बराबर है
PQRS एक आयत है, जो त्रिज्या 13 cm वाले एक वृत्त के चतुर्थांश के अंतर्गत है। A भुजा PQ पर स्थित कोई बिंदु है। यदि PS = 5 cm है, तो ar (PAS) = 30 cm2 है।
निम्नलिखित आकृति में, ABCD और EFGD समांतर चतुर्भुज हैं तथा G भुजा CD का मध्य-बिंदु है। तब, ar (DPC) = `1/2` ar (EFGD) है।
समांतर चतुर्भुज ABCD का क्षेत्रफल 90 cm2 है। ज्ञात कीजिए :
ar (ΔABD)
∆ABC, D भुजा AB का मध्य-बिंदु है तथा P भुजा BC पर स्थित कोई बिंदु है। यदि रेखाखंड CQ || PD भुजा AB से Q पर मिलता है (आकृति), तो सिद्ध कीजिए कि ar (BPQ) = `1/2` ar (∆ABC) है।
O एक समांतर चतुर्भुज PQRS के विकर्ण PR पर स्थित कोई बिंदु है (आकृति)। सिद्ध कीजिए कि ar (PSO) = ar (PQO) है।
यदि किसी चतुर्भुज की भुजाओं के मध्य-बिंदुओं को क्रम से मिलाया जाता है, तो सिद्ध कीजिए कि इस प्रकार बने समांतर चतुर्भुज का क्षेत्रफल दिए हुए चतुर्भुज के क्षेत्रफल का आधा होता है (आकृति)।
[संकेत : BD को मिलाइए और A से BD पर लंब खींचिए।]