Advertisements
Advertisements
प्रश्न
Find the 27th term of the following A.P.
9, 4, –1, –6, –11,...
उत्तर
The given sequence is 9, 4, –1, –6, –11,...
Here,
First term (a) = 9
Common difference (d) = a2 – a1 = 4 – (9) = –5
Now,
\[a_{27} = a + \left( n - 1 \right)d\]
\[ = 9 + \left( 27 - 1 \right)\left( - 5 \right)\]
\[ = 9 + \left( 26 \right)\left( - 5 \right)\]
\[ = - 121\]
Hence, the 27th term of the progression is –121.
APPEARS IN
संबंधित प्रश्न
Find the term t15 of an A.P. : 4, 9, 14, …………..
Find the sum of the following arithmetic series:
34 + 32 + 30 +...+10
Decide whether the following sequence is an A.P., if so find the 20th term of the progression:
–12, –5, 2, 9, 16, 23, 30, ..............
Given Arithmetic Progression 12, 16, 20, 24, . . . Find the 24th term of this progression.
Find the 19th term of the following A.P.:
7, 13, 19, 25, ...
Select the correct alternative and write it.
What is the sum of first n natural numbers ?
For a given A.P. a = 3.5, d = 0, then tn = _______.
If the sum of first n terms of an AP is n2, then find its 10th term.
How many multiples of 4 lie between 10 and 205?
Choose the correct alternative answer for the following sub-question
If the third term and fifth term of an A.P. are 13 and 25 respectively, find its 7th term
Find tn if a = 20 आणि d = 3
Find t5 if a = 3 आणि d = −3
How many two-digit numbers are divisible by 5?
Activity :- Two-digit numbers divisible by 5 are, 10, 15, 20, ......, 95.
Here, d = 5, therefore this sequence is an A.P.
Here, a = 10, d = 5, tn = 95, n = ?
tn = a + (n − 1) `square`
`square` = 10 + (n – 1) × 5
`square` = (n – 1) × 5
`square` = (n – 1)
Therefore n = `square`
There are `square` two-digit numbers divisible by 5
12, 16, 20, 24, ...... Find 25th term of this A.P.
The nth term of an A.P. 5, 8, 11, 14, ...... is 68. Find n = ?
If p - 1, p + 3, 3p - 1 are in AP, then p is equal to ______.
Find a and b so that the numbers a, 7, b, 23 are in A.P.