Advertisements
Advertisements
प्रश्न
The nth term of an A.P. 5, 8, 11, 14, ...... is 68. Find n = ?
उत्तर
The given A.P. is 5, 8, 11, 14, ......
Here, a = 5, d = 8 – 5 = 3, tn = 68
Since tn = a + (n – 1)d,
68 = 5 + (n – 1)(3)
∴ 68 = 5 + 3n – 3
∴ 68 = 2 + 3n
∴ 66 = 3n
∴ n = `66/3`
∴ n = 22
APPEARS IN
संबंधित प्रश्न
Find the sum of the following arithmetic series:
`7 + 10 1/2 + 14 + ....... + 84`
Find the sum of the following arithmetic series:
(-5)+(-8)+(-11)+...+(-230)
Decide whether the following sequence is an A.P., if so find the 20th term of the progression:
–12, –5, 2, 9, 16, 23, 30, ..............
Given Arithmetic Progression 12, 16, 20, 24, . . . Find the 24th term of this progression.
Find the 19th term of the following A.P.:
7, 13, 19, 25, ...
Find the 27th term of the following A.P.
9, 4, –1, –6, –11,...
Select the correct alternative and write it.
If a share is at premium, then -
For a given A.P. a = 3.5, d = 0, then tn = _______.
Find the 23rd term of the following A.P.: 9, 4,-1,-6,-11.
If the sum of first n terms of an AP is n2, then find its 10th term.
Choose the correct alternative answer for the following sub-question
If the third term and fifth term of an A.P. are 13 and 25 respectively, find its 7th term
Find t5 if a = 3 आणि d = −3
How many two-digit numbers are divisible by 5?
Activity :- Two-digit numbers divisible by 5 are, 10, 15, 20, ......, 95.
Here, d = 5, therefore this sequence is an A.P.
Here, a = 10, d = 5, tn = 95, n = ?
tn = a + (n − 1) `square`
`square` = 10 + (n – 1) × 5
`square` = (n – 1) × 5
`square` = (n – 1)
Therefore n = `square`
There are `square` two-digit numbers divisible by 5
Decide whether 301 is term of given sequence 5, 11, 17, 23, .....
Activity :- Here, d = `square`, therefore this sequence is an A.P.
a = 5, d = `square`
Let nth term of this A.P. be 301
tn = a + (n – 1) `square`
301 = 5 + (n – 1) × `square`
301 = 6n – 1
n = `302/6` = `square`
But n is not positive integer.
Therefore, 301 is `square` the term of sequence 5, 11, 17, 23, ......
12, 16, 20, 24, ...... Find 25th term of this A.P.
If p - 1, p + 3, 3p - 1 are in AP, then p is equal to ______.
Write the next two terms of the A.P.: `sqrt(27), sqrt(48), sqrt(75)`......