मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान इयत्ता ११

Find the Equivalent Capacitance of the Infinite Ladder Shown in Figure Between the Points A And B. - Physics

Advertisements
Advertisements

प्रश्न

Find the equivalent capacitance of the infinite ladder shown in figure between the points A and B.

बेरीज

उत्तर

Let the equivalent capacitance of the infinite ladder be C.

Because it is an infinite ladder, the change in the equivalent capacitance will be negligible if we add one more ladder at point AB, as shown in the given figure.

From the given figure, the equivalent capacitance can be calculated as :-

`C_(eq) = (2 xx C)/(2+C)+1 = C`

`⇒ (2+C)C = 3C + 2`

`⇒ 2C + C^2 = 3C + 2`

`⇒ C^2 - C - 2 = 0`

`⇒ (C-2) (C+1) = 0`

`⇒ C =-1 or C = 2`

`⇒ C= -1`         (It is not possible)

`therefore C = 2  "uF"`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Capacitors - Exercises [पृष्ठ १६७]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 2 [English] Class 11 and 12
पाठ 9 Capacitors
Exercises | Q 28 | पृष्ठ १६७

संबंधित प्रश्‍न

A bulb is connected in series with a variable capacitor and an AC source as shown. What happens to the brightness of the bulb when the key is plugged in and capacitance of the capacitor is gradually reduced?


A capacitor of capacitance C is charged to a potential V. The flux of the electric field through a closed surface enclosing the capacitor is


Suppose, one wishes to construct a 1⋅0 farad capacitor using circular discs. If the separation between the discs be kept at 1⋅0 mm, what would be the radius of the discs?


Two conducting spheres of radii R1 and R2 are kept widely separated from each other. What are their individual capacitances? If the spheres are connected by a metal wire, what will be the capacitance of the combination? Think in terms of series−parallel connections.


It is required to construct a 10 µF capacitor which can be connected across a 200 V battery. Capacitors of capacitance 10 µF are available but they can withstand only 50 V. Design a combination which can yield the desired result.


Find the equivalent capacitance of the system shown in figure between the points a and b.


A capacitor is made of a flat plate of area A and a second plate having a stair-like structure as shown in figure . The width of each stair is a and the height is b. Find the capacitance of the assembly.


A parallel-plate capacitor has plate area 100 cm2 and plate separation 1⋅0 cm. A glass plate (dielectric constant 6⋅0) of thickness 6⋅0 mm and an ebonite plate (dielectric constant 4⋅0) are inserted one over the other to fill the space between the plates of the capacitor. Find the new capacitance.


An air-filled parallel-plate capacitor is to be constructed which can store 12 µC of charge when operated at 1200 V. What can be the minimum plate area of the capacitor? The dielectric strength of air is `3 xx 10^6  "Vm"^-1`


Figure shows two parallel plate capacitors with fixed plates and connected to two batteries. The separation between the plates is the same for the two capacitors. The plates are rectangular in shape with width b and lengths l1 and l2. The left half of the dielectric slab has a dielectric constant K1 and the right half K2. Neglecting any friction, find the ration of the emf of the left battery to that of the right battery for which the dielectric slab may remain in equilibrium.


Consider the situation shown in figure. The plates of the capacitor have plate area A and are clamped in the laboratory. The dielectric slab is released from rest with a length a inside the capacitor. Neglecting any effect of friction or gravity, show that the slab will execute periodic motion and find its time period.


For the given capacitor configuration

  1. Find the charges on each capacitor
  2. potential difference across them
  3. energy stored in each capacitor.


Capacitors P and Q have identical cross-sectional areas A and separation d. The space between the capacitors is filled with a dielectric of dielectric constant Er as shown in the figure. Calculate the capacitance of capacitors P and Q.


A capacitor works in ______.

In a charged capacitor, the energy is stored in ______.

Two spherical conductors A and B of radii a and b(b > a) are placed concentrically in the air. B is given a charge +Q and A is earthed. The equivalent capacitance of the system is ______.


Can the potential function have a maximum or minimum in free space?


The material filled between the plates of a parallel plate capacitor has a resistivity of 200Ωm. The value of the capacitance of the capacitor is 2 pF. If a potential difference of 40V is applied across the plates of the capacitor, then the value of leakage current flowing out of the capacitor is ______.

(given the value of relative permittivity of a material is 50.)


A parallel plate capacitor (A) of capacitance C is charged by a battery to voltage V. The battery is disconnected and an uncharged capacitor (B) of capacitance 2C is connected across A. Find the ratio of final charges on A and B.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×