Advertisements
Advertisements
प्रश्न
Find f(a), if f is continuous at x = a where,
f(x) = `(1 - cos[7(x - pi)])/(5(x - pi)^2`, for x ≠ π at a = π
उत्तर
f is continuous at x = π
∴ f(π) = `lim_(x -> pi) "f"(x) = lim_(x -> pi) (1 - cos[7 (x - pi)])/(5(x - pi)^2`
Put x – π = h, as x → π, h → 0
∴ f(π) = `lim_("h" -> 0) (1 - cos7"h")/(5"h"^2)`
= `lim_("h" -> 0) (2sin^2((7"h")/2))/(5"h"^2)`
= `2/5 lim_("h" -> 0) (sin^2 ((7"h")/2))/(((7"h")/2)^2) xx (7/2)^2`
= `2/5 |lim_("h" -> 0) (sin ((7"h")/2))/(((7"h")/2))|^2 xx 49/4`
= `2/5 xx (1)^2 xx 49/4 ...[because lim_(theta -> 0) sintheta/theta = 1]`
∴ f(π) = `49/10`
APPEARS IN
संबंधित प्रश्न
Examine whether the function is continuous at the points indicated against them:
f(x) = x3 − 2x + 1, for x ≤ 2
= 3x − 2, for x > 2, at x = 2
Examine the continuity of `"f"(x) {:(= sin x",", "for" x ≤ pi/4), (= cos x",", "for" x > pi/4):}} "at" x = pi/4`
Examine the continuity of `f(x) = {:((x^2 - 9)/(x - 3)",", "for" x ≠ 3),(=8",", "for" x = 3):}}` at x = 3.
Examine whether the function is continuous at the points indicated against them:
f(x) `{:(= x^3 - 2x + 1",", "if" x ≤ 2),(= 3x - 2",", "if" x > 2):}}` at x = 2
Examine whether the function is continuous at the points indicated against them :
f(x) `{:(= x/(tan3x) + 2",", "for" x < 0),(= 7/3",", "for" x ≥ 0):}} "at" x = 0`
Discuss the continuity of the function f(x) = |2x + 3|, at x = `(−3)/(2)`
Identify discontinuities for the following function as either a jump or a removable discontinuity :
f(x) = `(x^2 - 10x + 21)/(x - 7)`
Identify discontinuities for the following function as either a jump or a removable discontinuity :
f(x) `{:(= x^2 - 3x - 2",", "for" x < -3),(= 3 + 8x",", "for" x > -3):}`
Identify discontinuities for the following function as either a jump or a removable discontinuity :
f(x) `{:(= 4 + sin x",", "for" x < pi),(= 3 - cos x",", "for" x > pi):}`
Discuss the continuity of the following function at the point indicated against them :
f(x) = `{:(=( sqrt(3) - tanx)/(pi - 3x)",", x ≠ pi/3),(= 3/4",", x = pi/3):}} "at" x = pi/3`
The following function has a removable discontinuity? If it has a removable discontinuity, redefine the function so that it becomes continuous :
f(x) `{:(=("e"^(5sinx) - "e"^(2x))/(5tanx - 3x)",", "for" x ≠ 0),(= 3/4",", "for" x = 0):}}` at x = 0
The following function has a removable discontinuity? If it has a removable discontinuity, redefine the function so that it become continuous :
f(x) = `((3 - 8x)/(3 - 2x))^(1/x)`, for x ≠ 0
If f(x) `{:(= (24^x - 8^x - 3^x + 1)/(12^x - 4^x - 3^x + 1)",", "for" x ≠ 0), (= "k"",", "for" x = 0):}}` is continuous at x = 0, find k
For what values of a and b is the function
f(x) `{:(= "a"x + 2"b" + 18",", "for" x ≤ 0),(= x^2 + 3"a" - "b"",", "for" 0 < x ≤ 2),(= 8x - 2",", "for" x > 2):}}` continuous for every x?
Discuss the continuity of f on its domain, where f(x) `{:(= |x + 1|",", "for" -3 ≤ x ≤ 2),(= |x - 5|",", "for" 2 < x ≤ 7):}`.
Select the correct answer from the given alternatives:
f(x) = `{:(= (2^(cotx) - 1)/(pi - 2x)",", "for" x ≠ pi/2),(= log sqrt(2)",", "for" x = pi/2):}`
Select the correct answer from the given alternatives:
f(x) = `(x^2 - 7x + 10)/(x^2 + 2x - 8)`, for x ∈ [– 6, – 3]
Select the correct answer from the given alternatives:
f(x) `{:(= ((16^x - 1)(9^x - 1))/((27^x - 1)(32^x - 1))",", "for" x ≠ 0),(= "k"",", "for" x = 0):}` is continuous at x = 0, then ‘k’ =
Discuss the continuity of the following function at the point(s) or on the interval indicated against them:
f(x) `{:( = (sin^2pix)/(3(1 - x)^2) ",", "for" x ≠ 1),(= (pi^2sin^2((pix)/2))/(3 + 4cos^2 ((pix)/2)) ",", "for" x = 1):}}` at x = 1
Discuss the continuity of the following function at the point(s) or on the interval indicated against them:
f(x) = [x + 1] for x ∈ [−2, 2)
Where [*] is greatest integer function.
Find k if following function is continuous at the point indicated against them:
f(x) `{:(= ((5x - 8)/(8 - 3x))^(3/(2x - 4))",", "for" x ≠ 2),(= "k"",", "for" x = 2):}}` at x = 2
Find k if following function is continuous at the point indicated against them:
f(x) `{:(= (45^x - 9^x - 5^x + 1)/(("k"^x - 1)(3^x - 1))",", "for" x ≠ 0),(= 2/3",", "for" x = 0):}}` at x = 0
Find f(a), if f is continuous at x = a where,
f(x) = `(1 + cos(pi x))/(pi(1 - x)^2)`, for x ≠ 1 and at a = 1
If f(x) is continuous at x = 3, where
f(x) = ax + 1, for x ≤ 3
= bx + 3, for x > 3 then.
If f(x) = `[tan (pi/4 + x)]^(1/x)`, x ≠ 0 at
= k, x = 0 is continuous x = 0. Then k = ______.
If f(x) = `{(8-6x; 0<x≤2), (4x-12; 2<x≤3),(2x+10; 3<x≤6):}` then f(x) is ______
If f(x) = `{{:((sin5x)/(x^2 + 2x)",", x ≠ 0),(k + 1/2",", x = 0):}` is continuous at x = 0, then the value of k is ______.
Let f be the function defined by
f(x) = `{{:((x^2 - 1)/(x^2 - 2|x - 1| - 1)",", x ≠ 1),(1/2",", x = 1):}`
If f(x) = `1/(1 - x)`, the number of points of discontinuity of f{f[f(x)]} is ______.
If the function f(x) = `[tan(π/4 + x)]^(1/x)` for x ≠ 0 is = K for x = 0 continuous at x = 0, then K = ?
If f(x) = `{{:(log(sec^2 x)^(cot^2x)",", "for" x ≠ 0),(K",", "for" x = 0):}`
is continuous at x = 0, then K is ______.
If the function f(x) defined by
f(x) = `{{:(x sin 1/x",", "for" x = 0),(k",", "for" x = 0):}`
is continuous at x = 0, then k is equal to ______.
For what value of k, the function defined by
f(x) = `{{:((log(1 + 2x)sin^0)/x^2",", "for" x ≠ 0),(k",", "for" x = 0):}`
is continuous at x = 0 ?
If f(x) = `{{:((3 sin πx)/(5x),",", x ≠ 0),(2k,",", x = 0):}`
is continuous at x = 0, then the value of k is ______.