मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

Find k if following function is continuous at the point indicated against them: f(x) =(5x-88-3x)12x-4,for x≠2=k,for x=2} at x = 2 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find k if following function is continuous at the point indicated against them:

f(x) `{:(= ((5x - 8)/(8 - 3x))^(3/(2x - 4))",", "for"  x ≠ 2),(= "k"",", "for"  x = 2):}}` at x = 2

बेरीज

उत्तर

f(x) is continuous at x = 2

∴ f(2) = `lim_(x -> 2) "f"(x)`

∴ k = `lim_(x -> 2) ((5x - 8)/(8 - 3x))^(3/(2x - 4))`

Put x – 2 = h

∴ x = 2 + h

As x → 2, h → 0

∴ k = `lim_("h" -> 0) [(5(2 + "h") - 8)/(8 - 3(2 + "h"))]^(3/(2"h"))`

= `lim_("h" -> 0) ((10 + 5"h" - 8)/(8 - 6 - 3"h"))^(3/(2"h"))`

= `lim_("h" -> 0) ((2 + 5"h")/(2 - 3"h"))^(3/(2"h"))`

= `lim_("h" -> 0) [(2(1 + (5"h")/2))/(2(1 - (3"h")/2))]^(3/(2"h"))`

= `lim_("h" -> 0) (1 + (5"h")/2)^(3/(2"h"))/((1 - (3"h")/2)^(3/(2"h"))`

= `(lim_("h" -> 0) [(1 + (5"h")/2)^(2/(5"h"))]^(5/2 xx 3/2))/(lim_("h" -> 0)[(1 - (3"h")/2)^((-2)/(3"h"))]^((-3)/2 xx 3/2)`

= `"e"^(15/4)/"e"^((-9)/4)   ...[(because "h" -> 0","  (5"h")/2 -> 0","  (-3"h")/2 -> 0),("and" lim_(x -> 0) (1 + x)^(1/x) =  "e")]`

= `"e"^(24/4)`

= e6

shaalaa.com
Continuous and Discontinuous Functions
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Continuity - MISCELLANEOUS EXERCISE-8 [पृष्ठ १७८]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
पाठ 8 Continuity
MISCELLANEOUS EXERCISE-8 | Q (V) (1) | पृष्ठ १७८

संबंधित प्रश्‍न

Examine whether the function is continuous at the points indicated against them:
f(x) = x3 − 2x + 1,         for x ≤ 2
      = 3x − 2,                 for x > 2, at x = 2


Examine whether the function is continuous at the points indicated against them:
f(x) = `(x^2 + 18x - 19)/(x - 1)`        for x ≠ 1

      = 20                               for x = 1, at x = 1


Examine the continuity of `"f"(x)  {:(= sin x",",  "for"  x ≤ pi/4), (= cos x",",  "for"  x > pi/4):}}  "at"  x = pi/4`


Examine the continuity of `f(x) = {:((x^2 - 9)/(x  - 3)",",  "for"  x ≠ 3),(=8",",  "for"  x = 3):}}` at x = 3.


Discuss the continuity of the function f(x) = |2x + 3|, at x = `(−3)/(2)`


Test the continuity of the following function at the point or interval indicated against them :

f(x) `{:(= 4x + 1",",  "for"  x ≤  8/3),(= (59 - 9x)/3 ",",  "for"  x > 8/3):}}  "at"  x = 8/3`


Identify discontinuities for the following function as either a jump or a removable discontinuity :

f(x) `{:(= x^2 - 3x - 2",",  "for"  x < -3),(= 3 + 8x",",  "for"  x > -3):}`


Identify discontinuities for the following function as either a jump or a removable discontinuity :

f(x) `{:(= 4 + sin x",",  "for"  x < pi),(= 3 - cos x",",  "for"  x > pi):}`


Discuss the continuity of the following function at the point indicated against them :

f(x) = `{:(=( sqrt(3) - tanx)/(pi - 3x)",", x ≠ pi/3),(= 3/4",", x = pi/3):}}  "at"  x = pi/3`


The following function has a removable discontinuity? If it has a removable discontinuity, redefine the function so that it become continuous :

f(x) `{:(= 3x + 2",",  "for"  -4 ≤ x ≤-2),(= 2x - 3";",  "for"  -2 < x ≤ 6):}`


The following function has a removable discontinuity? If it has a removable discontinuity, redefine the function so that it become continuous :

f(x) `{:(= (x^3 - 8)/(x^2 - 4)",",  "for"  x > 2),(= 3",",  "for"  x = 2),(= ("e"^(3(x - 2)^2 - 1))/(2(x - 2)^2) ",",  "for"  x < 2):}`


If f(x) `{:(= (24^x - 8^x - 3^x + 1)/(12^x - 4^x - 3^x + 1)",",  "for"  x ≠ 0), (= "k"",",  "for"  x = 0):}}` is continuous at x = 0, find k


If f(x) `{:(= (sin2x)/(5x) - "a"",", "for"  x > 0),(= 4 ",", "for"  x = 0),(= x^2 + "b" - 3",", "for"  x < 0):}}` is continuous at x = 0, find a and b


Discuss the continuity of f on its domain, where f(x) `{:(= |x + 1|",", "for"  -3 ≤ x ≤ 2),(= |x - 5|",", "for"  2 < x ≤ 7):}`.


Show that there is a root for the equation 2x3 − x − 16 = 0 between 2 and 3.


Show that there is a root for the equation x3 − 3x = 0 between 1 and 2.


Let f(x) = ax + b (where a and b are unknown)

= x2 + 5 for x ∈ R

Find the values of a and b, so that f(x) is continuous at x = 1


Suppose f(x) `{:(= "p"x + 3",", "for"  "a" ≤ x ≤ "b"),(= 5x^2 − "q"",", "for"  "b" < x ≤ "c"):}`

Find the condition on p, q, so that f(x) is continuous on [a, c], by filling in the blanks.

f(b) = ______

`lim_(x -> "b"^+) "f"(x)` = _______

∴ pb + 3 = _______ − q

∴ p = `"_____"/"b"` is the required condition


Select the correct answer from the given alternatives:

f(x) = `{:(= (2^(cotx) - 1)/(pi - 2x)",", "for"  x ≠ pi/2),(= log sqrt(2)",", "for"  x = pi/2):}`


Select the correct answer from the given alternatives:

If f(x) = `((4 + 5x)/(4 - 7x))^(4/x)`, for x ≠ 0 and f(0) = k, is continuous at x = 0, then k is


Select the correct answer from the given alternatives:

If f(x) = [x] for x ∈ (–1, 2) then f is discontinuous at


Discuss the continuity of the following function at the point(s) or on the interval indicated against them:

f(x) `{:( = (sin^2pix)/(3(1 - x)^2) ",", "for"  x ≠ 1),(= (pi^2sin^2((pix)/2))/(3 + 4cos^2 ((pix)/2)) ",", "for"  x = 1):}}` at x = 1


Discuss the continuity of the following function at the point(s) or on the interval indicated against them:

f(x) `{:(= 2x^2 + x + 1",", "for"  |x - 3| ≥ 2),(= x^2 + 3",", "for"  1 < x < 5):}`


Identify discontinuity for the following function as either a jump or a removable discontinuity on their respective domain:

f(x) `{:(= (x^2 + x + 1)/(x + 1)"," , "for"  x ∈ [0, 3)),(=(3x +4)/(x^2 - 5)"," , "for"  x ∈ [3, 6]):}`


Find k if following function is continuous at the point indicated against them:

f(x) `{:(= (45^x - 9^x - 5^x + 1)/(("k"^x - 1)(3^x - 1))",", "for"  x ≠ 0),(= 2/3",", "for"  x = 0):}}` at x = 0


Find a and b if following function is continuous at the point or on the interval indicated against them:

f(x) `{:(= "a"x^2 + "b"x + 1",", "for"  |2x - 3| ≥ 2),(= 3x + 2",", "for"  1/2 < x < 5/2):}`


Find f(a), if f is continuous at x = a where,

f(x) = `(1 - cos[7(x - pi)])/(5(x - pi)^2`, for x ≠ π at a = π


If f(x) = `{((x^4 - 1/81)/(x^3 - 1/27), x ≠ 1/3), (k, x = 1/3):}` is continuous at x = `1/3`, then the value of k is ______


If f(x) is continuous at x = 3, where

f(x) = ax + 1, for x ≤ 3

= bx + 3, for x > 3 then.


If f(x) = `{{:(tanx/x + secx",",   x ≠ 0),(2",",  x = 0):}`, then ______.


Let f be the function defined by

f(x) = `{{:((x^2 - 1)/(x^2 - 2|x - 1| - 1)",", x ≠ 1),(1/2",", x = 1):}`


The function f(x) = x – |x – x2| is ______.


If f(x) = `{{:((3 sin πx)/(5x),",", x ≠ 0),(2k,",", x = 0):}`

is continuous at x = 0, then the value of k is ______.


If f(x) = `{{:((sin^3(sqrt(3)).log(1  +  3x))/((tan^-1 sqrt(x))^2(e^(5sqrt(3))  -  1)x)",", x ≠ 0),(                         a",", x = 0):}`

is continuous in [0, 1] then a is equal to ______.


`lim_(x rightarrow 0) (e^(x^2) - cosx)/x^2` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×