Advertisements
Advertisements
प्रश्न
Discuss the continuity of the following function at the point(s) or on the interval indicated against them:
f(x) `{:(= 2x^2 + x + 1",", "for" |x - 3| ≥ 2),(= x^2 + 3",", "for" 1 < x < 5):}`
उत्तर
|x − 3| ≥ 2
∴ x – 3 ≥ 2 or x – 3 ≤ – 2
∴ x ≥ 5 or x ≤ 1
∴ f(x) `{:(= 2x^2 + x + 1, ";" x ≤ 1),(= x^2 + 3, ";" 1 < x < 5),(= 2x^2 + x + 1, ";" x ≥ 5):}`
Consider the intervals
x < 1 i.e. (– ∞, 1)
1 < x < 5 i.e. (1, 5)
x > 5 i.e. (5, ∞)
In all these intervals f(x) is a polynomial function and hence is continuous at all points.
For continuity at x = 1:
`lim_(x -> 1^-) "f"(x) = lim_(x -> 1^-) (2x^2 + x + 1)`
= 2(1)2 + 1 + 1
= 4
`lim_(x -> 1^+) "f"(x) = lim_(x -> 1^+) (x^2 + 3)`
= (1)2 + 3
= 4
Also f(1) = 2(1)2 + 1 + 1
= 4
∴ `lim_(x -> 1^-) "f"(x) = lim_(x -> 1^+) "f"(x)` = f(1)
∴ f(x) is continuous at x = 1
For continuity at x = 5:
`lim_(x -> 5^-) "f"(x) = lim_(x -> 5^-) (x^2 + 3)`
= (5)2 + 3
= 28
`lim_(x -> 5^+) "f"(x) = lim_(x -> 5^+) (2x^2 + x + 1)`
= 2(5)2 + 5 + 1
= 56
∴ `lim_(x -> 5^-) "f"(x) ≠ lim_(x -> 5+) "f"(x)`
∴ f(x) is discontinuous at x = 5
∴ f(x) is continuous for all x ∈ R, except at x = 5
APPEARS IN
संबंधित प्रश्न
Examine the continuity of `"f"(x) {:(= sin x",", "for" x ≤ pi/4), (= cos x",", "for" x > pi/4):}} "at" x = pi/4`
Examine whether the function is continuous at the points indicated against them :
f(x) `{:( = (x^2 + 18x - 19)/(x - 1)",", "for" x ≠ 1),(= 20",", "for" x = 1):}}` at x = 1
Examine whether the function is continuous at the points indicated against them :
f(x) `{:(= x/(tan3x) + 2",", "for" x < 0),(= 7/3",", "for" x ≥ 0):}} "at" x = 0`
Find all the point of discontinuities of f(x) = [x] on the interval (− 3, 2).
Identify discontinuities for the following function as either a jump or a removable discontinuity :
f(x) `{:(= x^2 - 3x - 2",", "for" x < -3),(= 3 + 8x",", "for" x > -3):}`
Identify discontinuities for the following function as either a jump or a removable discontinuity :
f(x) `{:(= 4 + sin x",", "for" x < pi),(= 3 - cos x",", "for" x > pi):}`
Show that following function have continuous extension to the point where f(x) is not defined. Also find the extension :
f(x) = `(1 - cos2x)/sinx`, for x ≠ 0
Discuss the continuity of the following function at the point indicated against them :
f(x) = `{:(=( sqrt(3) - tanx)/(pi - 3x)",", x ≠ pi/3),(= 3/4",", x = pi/3):}} "at" x = pi/3`
The following function has a removable discontinuity? If it has a removable discontinuity, redefine the function so that it become continuous :
f(x) `{:(= log_((1 + 3x)) (1 + 5x)",", "for" x > 0),(=(32^x - 1)/(8^x - 1)",", "for" x < 0):}}` at x = 0
If f(x) `{:(= (sin2x)/(5x) - "a"",", "for" x > 0),(= 4 ",", "for" x = 0),(= x^2 + "b" - 3",", "for" x < 0):}}` is continuous at x = 0, find a and b
For what values of a and b is the function
f(x) `{:(= "a"x + 2"b" + 18",", "for" x ≤ 0),(= x^2 + 3"a" - "b"",", "for" 0 < x ≤ 2),(= 8x - 2",", "for" x > 2):}}` continuous for every x?
Show that there is a root for the equation 2x3 − x − 16 = 0 between 2 and 3.
Show that there is a root for the equation x3 − 3x = 0 between 1 and 2.
Select the correct answer from the given alternatives:
If f(x) = `(1 - sqrt(2) sinx)/(pi - 4x), "for" x ≠ pi/4` is continuous at x = `pi/4`, then `"f"(pi/4)` =
Select the correct answer from the given alternatives:
f(x) `{:(= (32^x - 8^x - 4^x + 1)/(4^x - 2^(x + 1) + 1)",", "for" x ≠ 0),(= "k""," , "for" x = 0):}` is continuous at x = 0, then value of ‘k’ is
Select the correct answer from the given alternatives:
If f(x) = `(12^x - 4^x - 3^x + 1)/(1 - cos 2x)`, for x ≠ 0 is continuous at x = 0 then the value of f(0) is ______.
Select the correct answer from the given alternatives:
If f(x) = [x] for x ∈ (–1, 2) then f is discontinuous at
Discuss the continuity of the following function at the point(s) or on the interval indicated against them:
f(x) `{:(= (x^2 - 3x - 10)/(x - 5)",", "for" 3 ≤ x ≤ 6"," x ≠ 5),(= 10",", "for" x = 5),(=(x^2 - 3x - 10)/(x - 5)",", "for" 6 < x ≤ 9):}`
Identify discontinuity for the following function as either a jump or a removable discontinuity on their respective domain:
f(x) `{:(= x^2 + x - 3,"," "for" x ∈ [ -5, -2)),(= x^2 - 5,"," "for" x ∈ (-2, 5]):}`
Find k if following function is continuous at the point indicated against them:
f(x) `{:(= ((5x - 8)/(8 - 3x))^(3/(2x - 4))",", "for" x ≠ 2),(= "k"",", "for" x = 2):}}` at x = 2
Find a and b if following function is continuous at the point or on the interval indicated against them:
f(x) `{:(= "a"x^2 + "b"x + 1",", "for" |2x - 3| ≥ 2),(= 3x + 2",", "for" 1/2 < x < 5/2):}`
Find f(a), if f is continuous at x = a where,
f(x) = `(1 + cos(pi x))/(pi(1 - x)^2)`, for x ≠ 1 and at a = 1
Solve using intermediate value theorem:
Show that x3 − 5x2 + 3x + 6 = 0 has at least two real root between x = 1 and x = 5
If f(x) = `{:{(tan^-1|x|; "when" x ≠ 0), (pi/4; "when" x = 0):}`, then ______
Let f : [-1, 2] → [0, ∞] be a continuous function such that f(x) = f(1 - x) ∀ x ∈ [-1, 2].
Let R1 = `int_-1^2 xf(x) dx` and R2 be the area of the region bounded by y = f(x), x = -1, x = 2 and the X-axis. Then, ______
If f(x) = `{{:((sin5x)/(x^2 + 2x)",", x ≠ 0),(k + 1/2",", x = 0):}` is continuous at x = 0, then the value of k is ______.
If the function f(x) = `[tan(π/4 + x)]^(1/x)` for x ≠ 0 is = K for x = 0 continuous at x = 0, then K = ?
If the function f(x) defined by
f(x) = `{{:(x sin 1/x",", "for" x = 0),(k",", "for" x = 0):}`
is continuous at x = 0, then k is equal to ______.
Which of the following is not continuous for all x?
For x > 0, `lim_(x rightarrow 0) ((sin x)^(1//x) + (1/x)^sinx)` is ______.
If f(x) = `{{:((sin^3(sqrt(3)).log(1 + 3x))/((tan^-1 sqrt(x))^2(e^(5sqrt(3)) - 1)x)",", x ≠ 0),( a",", x = 0):}`
is continuous in [0, 1] then a is equal to ______.
`lim_(x rightarrow 0) (e^(x^2) - cosx)/x^2` is equal to ______.