Advertisements
Advertisements
प्रश्न
Discuss the continuity of the following function at the point or on the interval indicated against them. If the function is discontinuous, identify the type of discontinuity and state whether the discontinuity is removable. If it has a removable discontinuity, redefine the function so that it becomes continuous:
f(x) `{:(= x^2 + 2x + 5"," , "for" x ≤ 3),( = x^3 - 2x^2 - 5",", "for" x > 3):}`
उत्तर
`lim_(x -> 3^-) "f"(x) = lim_(x -> 3^-) (x^2 + 2x + 5)`
= (3)2 + 2(3) + 5
= 9 + 6 + 5
= 20
`lim_(x -> 3^+) "f"(x) = lim_(x -> 3^+) (x^3 - 2x^2 - 5)`
= (3)3 + 2(3)2 – 5
= 27 – 18 – 5
= 4
∴ `lim_(x -> 3^-) "f"(x) ≠ lim_(x -> 3^+) "f"(x)`
∴ `lim_(x -> 3) "f"(x)` does not exist
∴ f(x) is discontinuous at x = 3
This continuity is irremovable.
APPEARS IN
संबंधित प्रश्न
Examine whether the function is continuous at the points indicated against them:
f(x) = x3 − 2x + 1, for x ≤ 2
= 3x − 2, for x > 2, at x = 2
Examine whether the function is continuous at the points indicated against them:
f(x) = `(x^2 + 18x - 19)/(x - 1)` for x ≠ 1
= 20 for x = 1, at x = 1
Examine the continuity of f(x) = x3 + 2x2 − x − 2 at x = − 2
Examine whether the function is continuous at the points indicated against them:
f(x) `{:(= x^3 - 2x + 1",", "if" x ≤ 2),(= 3x - 2",", "if" x > 2):}}` at x = 2
Examine whether the function is continuous at the points indicated against them :
f(x) `{:( = (x^2 + 18x - 19)/(x - 1)",", "for" x ≠ 1),(= 20",", "for" x = 1):}}` at x = 1
Find all the point of discontinuities of f(x) = [x] on the interval (− 3, 2).
Test the continuity of the following function at the point or interval indicated against them :
f(x) `{:(= (x^3 - 8)/(sqrt(x + 2) - sqrt(3x - 2))",", "for" x ≠ 2),(= -24",", "for" x = 2):}}` at x = 2
The following function has a removable discontinuity? If it has a removable discontinuity, redefine the function so that it become continuous :
f(x) `{:(= log_((1 + 3x)) (1 + 5x)",", "for" x > 0),(=(32^x - 1)/(8^x - 1)",", "for" x < 0):}}` at x = 0
The following function has a removable discontinuity? If it has a removable discontinuity, redefine the function so that it become continuous :
f(x) `{:(= (x^3 - 8)/(x^2 - 4)",", "for" x > 2),(= 3",", "for" x = 2),(= ("e"^(3(x - 2)^2 - 1))/(2(x - 2)^2) ",", "for" x < 2):}`
If f(x) = `(sqrt(2 + sin x) - sqrt(3))/(cos^2x), "for" x ≠ pi/2`, is continuous at x = `pi/2` then find `"f"(pi/2)`
If f(x) `{:(= (sin2x)/(5x) - "a"",", "for" x > 0),(= 4 ",", "for" x = 0),(= x^2 + "b" - 3",", "for" x < 0):}}` is continuous at x = 0, find a and b
For what values of a and b is the function
f(x) `{:(= "a"x + 2"b" + 18",", "for" x ≤ 0),(= x^2 + 3"a" - "b"",", "for" 0 < x ≤ 2),(= 8x - 2",", "for" x > 2):}}` continuous for every x?
For what values of a and b is the function
f(x) `{:(= (x^2 - 4)/(x - 2)",", "for" x < 2),(= "a"x^2 - "b"x + 3",", "for" 2 ≤ x < 3),(= 2x - "a" + "b"",", "for" x ≥ 3):}}` continuous for every x on R?
Determine the values of p and q such that the following function is continuous on the entire real number line.
f(x) `{:(= x + 1",", "for" 1 < x < 3),(= x^2 + "p"x + "q"",", "for" |x - 2| ≥ 1):}`
Show that there is a root for the equation x3 − 3x = 0 between 1 and 2.
Select the correct answer from the given alternatives:
f(x) = `{:(= (2^(cotx) - 1)/(pi - 2x)",", "for" x ≠ pi/2),(= log sqrt(2)",", "for" x = pi/2):}`
Select the correct answer from the given alternatives:
If f(x) = `(1 - sqrt(2) sinx)/(pi - 4x), "for" x ≠ pi/4` is continuous at x = `pi/4`, then `"f"(pi/4)` =
Select the correct answer from the given alternatives:
If f(x) `{:(= "a"x^2 + "b"x + 1",", "for" |x −1| ≥ 3), (= 4x + 5",", "for" -2 < x < 4):}` is continuous everywhere then,
Select the correct answer from the given alternatives:
If f(x) = `(12^x - 4^x - 3^x + 1)/(1 - cos 2x)`, for x ≠ 0 is continuous at x = 0 then the value of f(0) is ______.
Select the correct answer from the given alternatives:
If f(x) = `((4 + 5x)/(4 - 7x))^(4/x)`, for x ≠ 0 and f(0) = k, is continuous at x = 0, then k is
Discuss the continuity of the following function at the point(s) or on the interval indicated against them:
f(x) `{:(= 2x^2 - 2x + 5",", "for" 0 ≤ x ≤ 2),(= (1 - 3x - x^2)/(1 - x) "," , "for" 2 < x < 4),(= (x^2 - 25)/(x - 5)",", "for" 4 ≤ x ≤ 7 and x ≠ 5),(= 7",", "for" x = 5):}`
Discuss the continuity of the following function at the point(s) or on the interval indicated against them:
f(x) = `(cos4x - cos9x)/(1 - cosx)`, for x ≠ 0
f(0) = `68/15`, at x = 0 on `- pi/2 ≤ x ≤ pi/2`
Discuss the continuity of the following function at the point(s) or on the interval indicated against them:
f(x) `{:( = (sin^2pix)/(3(1 - x)^2) ",", "for" x ≠ 1),(= (pi^2sin^2((pix)/2))/(3 + 4cos^2 ((pix)/2)) ",", "for" x = 1):}}` at x = 1
Discuss the continuity of the following function at the point(s) or on the interval indicated against them:
f(x) `{:(= 2x^2 + x + 1",", "for" |x - 3| ≥ 2),(= x^2 + 3",", "for" 1 < x < 5):}`
Identify discontinuity for the following function as either a jump or a removable discontinuity on their respective domain:
f(x) `{:(= x^2 + x - 3,"," "for" x ∈ [ -5, -2)),(= x^2 - 5,"," "for" x ∈ (-2, 5]):}`
Discuss the continuity of the following function at the point or on the interval indicated against them. If the function is discontinuous, identify the type of discontinuity and state whether the discontinuity is removable. If it has a removable discontinuity, redefine the function so that it becomes continuous:
f(x) = `((x + 3)(x^2 - 6x + 8))/(x^2 - x - 12)`
Find k if following function is continuous at the point indicated against them:
f(x) `{:(= ((5x - 8)/(8 - 3x))^(3/(2x - 4))",", "for" x ≠ 2),(= "k"",", "for" x = 2):}}` at x = 2
Solve using intermediate value theorem:
Show that 5x − 6x = 0 has a root in [1, 2]
If f(x) = `{((x^4 - 1/81)/(x^3 - 1/27), x ≠ 1/3), (k, x = 1/3):}` is continuous at x = `1/3`, then the value of k is ______
If f(x) = `{:{(tan^-1|x|; "when" x ≠ 0), (pi/4; "when" x = 0):}`, then ______
If f(x) is continuous at x = 3, where
f(x) = ax + 1, for x ≤ 3
= bx + 3, for x > 3 then.
If f(x) = `{{:(x, "for" x ≤ 0),(0,
"for" x > 0):}`, then f(x) at x = 0 is ______.
For x > 0, `lim_(x rightarrow 0) ((sin x)^(1//x) + (1/x)^sinx)` is ______.
If f(x) = `{{:((3 sin πx)/(5x),",", x ≠ 0),(2k,",", x = 0):}`
is continuous at x = 0, then the value of k is ______.
If f(x) = `{{:((sin^3(sqrt(3)).log(1 + 3x))/((tan^-1 sqrt(x))^2(e^(5sqrt(3)) - 1)x)",", x ≠ 0),( a",", x = 0):}`
is continuous in [0, 1] then a is equal to ______.