मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

The following function has a removable discontinuity? If it has a removable discontinuity, redefine the function so that it become continuous : f(x) = (3-8x3-2x)1x, for x ≠ 0 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

The following function has a removable discontinuity? If it has a removable discontinuity, redefine the function so that it become continuous :

f(x) = `((3 - 8x)/(3 - 2x))^(1/x)`, for x ≠ 0

बेरीज

उत्तर

f(x) = `((3 - 8x)/(3 - 2x))^(1/x)`, for x ≠ 0

Here, f(0) is not defined.

Consider, `lim_(x -> 0) "f"(x) =  lim_(x -> 0) ((3 - 8x)/(3 - 2x))^(1/x)`

= `lim_(x -> 0) [(3(1 - (8x)/3))/(3(1 - (2x)/3))]^(1/x)`

= `lim_(x -> 0) ((1 - (8x)/3)^(1/x))/(1 - (2x)/3)^(1/x)`

= `(lim_(x -> 0) [(1 - (8x)/3)^((-3)/(8x))]^((-8)/3))/(lim_(x -> 0) [(1 - (2x)/3)^((-3)/(2x))]^((-2)/3))`

= `("e"^((-8)/3))/("e"^((-2)/3))  ...[(because x -> 0"," (-8x)/3 -> 0"," (-2x)/3 -> 0),(and lim_(x -> 0) (1 + x)^(1/x) = "e")]`

= `"e"^((-6)/3)`

= e–2

∴ `lim_(x -> 0) "f"(x)` exists

But f(0) is not defined.

∴  f(x) has a removable discontinuity at x = 0.

This discontinuity can be removed by defining f(0) = e–2  

∴  f(x) can be redefined as

f(x)  `{:(= ((3 - 8x)/(3 - 2x))^(1/x), ";"  x ≠ 0),(= "e"^(-2), ";"  x = 0):}`

shaalaa.com
Continuous and Discontinuous Functions
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Continuity - EXERCISE 8.1 [पृष्ठ १७४]

APPEARS IN

संबंधित प्रश्‍न

Examine whether the function is continuous at the points indicated against them:
f(x) = `(x^2 + 18x - 19)/(x - 1)`        for x ≠ 1

      = 20                               for x = 1, at x = 1


Examine the continuity of f(x) = x3 + 2x2 − x − 2 at x = − 2


Examine the continuity of `"f"(x)  {:(= sin x",",  "for"  x ≤ pi/4), (= cos x",",  "for"  x > pi/4):}}  "at"  x = pi/4`


Examine whether the function is continuous at the points indicated against them:

f(x)  `{:(= x^3 - 2x + 1",",  "if"  x ≤ 2),(= 3x - 2",",  "if"  x > 2):}}` at x = 2


Find all the point of discontinuities of f(x) = [x] on the interval (− 3, 2).


Test the continuity of the following function at the point or interval indicated against them :

f(x)  `{:(= (sqrt(x - 1) - (x - 1)^(1/3))/(x - 2)",",  "for"  x ≠ 2),(= 1/5",",  "for"  x = 2):}}`at x = 2


Test the continuity of the following function at the point or interval indicated against them:

f(x) `{:( =(x^2 + 8x - 20)/(2x^2 - 9x + 10)",",  "for"  0 < x < 3","  x ≠ 2),(= 12",",  "for"  x = 2),(= (2 - 2x - x^2)/(x - 4)",",  "for"  3 ≤ x < 4):}}` at x = 2


Identify discontinuities for the following function as either a jump or a removable discontinuity :

f(x) = `(x^2 - 10x + 21)/(x - 7)`


Identify the discontinuity for the following function as either a jump or a removable discontinuity.

f(x) `{:(= x^2 + 3x - 2",",  "for"  x ≤ 4),(= 5x + 3",",  "for"  x > 4):}`


Identify discontinuities for the following function as either a jump or a removable discontinuity :

f(x) `{:(= x^2 - 3x - 2",",  "for"  x < -3),(= 3 + 8x",",  "for"  x > -3):}`


Discuss the continuity of the following function at the point indicated against them :

f(x)  `{:(=(4^x - 2^(x + 1) + 1)/(1 - cos 2x)",",  "for"  x ≠ 0),(= (log 2)^2/2",",  "for"  x = 0):}}` at x = 0.


The following function has a removable discontinuity? If it has a removable discontinuity, redefine the function so that it become continuous :

f(x) `{:(= (x^3 - 8)/(x^2 - 4)",",  "for"  x > 2),(= 3",",  "for"  x = 2),(= ("e"^(3(x - 2)^2 - 1))/(2(x - 2)^2) ",",  "for"  x < 2):}`


If f(x) = `(cos^2 x - sin^2 x - 1)/(sqrt(3x^2 + 1) - 1)` for x ≠ 0, is continuous at x = 0 then find f(0)


Discuss the continuity of f on its domain, where f(x) `{:(= |x + 1|",", "for"  -3 ≤ x ≤ 2),(= |x - 5|",", "for"  2 < x ≤ 7):}`.


Show that there is a root for the equation x3 − 3x = 0 between 1 and 2.


Let f(x) = ax + b (where a and b are unknown)

= x2 + 5 for x ∈ R

Find the values of a and b, so that f(x) is continuous at x = 1


Suppose f(x) `{:(= "p"x + 3",", "for"  "a" ≤ x ≤ "b"),(= 5x^2 − "q"",", "for"  "b" < x ≤ "c"):}`

Find the condition on p, q, so that f(x) is continuous on [a, c], by filling in the blanks.

f(b) = ______

`lim_(x -> "b"^+) "f"(x)` = _______

∴ pb + 3 = _______ − q

∴ p = `"_____"/"b"` is the required condition


Select the correct answer from the given alternatives:

If f(x) = `((sin2x)tan5x)/("e"^(2x) - 1)^2`, for x ≠ 0 is continuous at x = 0, then f(0) is


Select the correct answer from the given alternatives:

f(x) `{:(= (32^x - 8^x - 4^x + 1)/(4^x - 2^(x + 1) + 1)",", "for"  x ≠ 0),(= "k""," , "for"  x = 0):}` is continuous at x = 0, then value of ‘k’ is


Select the correct answer from the given alternatives:

If f(x) = [x] for x ∈ (–1, 2) then f is discontinuous at


Discuss the continuity of the following function at the point(s) or on the interval indicated against them:

f(x) `{:(= (x^2 - 3x - 10)/(x - 5)",", "for"  3 ≤ x ≤ 6","  x ≠ 5),(= 10",", "for"  x = 5),(=(x^2 - 3x - 10)/(x - 5)",", "for"  6 < x ≤ 9):}`


Discuss the continuity of the following function at the point(s) or on the interval indicated against them:

f(x) = [x + 1] for x ∈ [−2, 2)

Where [*] is greatest integer function.


Identify discontinuity for the following function as either a jump or a removable discontinuity on their respective domain:

f(x) `{:(= (x^2 + x + 1)/(x + 1)"," , "for"  x ∈ [0, 3)),(=(3x +4)/(x^2 - 5)"," , "for"  x ∈ [3, 6]):}`


Find k if following function is continuous at the point indicated against them:

f(x) `{:(= (45^x - 9^x - 5^x + 1)/(("k"^x - 1)(3^x - 1))",", "for"  x ≠ 0),(= 2/3",", "for"  x = 0):}}` at x = 0


Find a and b if following function is continuous at the point or on the interval indicated against them:

f(x) `{:(= "a"x^2 + "b"x + 1",", "for"  |2x - 3| ≥ 2),(= 3x + 2",", "for"  1/2 < x < 5/2):}`


Find f(a), if f is continuous at x = a where,

f(x) = `(1 + cos(pi x))/(pi(1 - x)^2)`, for x ≠ 1 and at a = 1


Find f(a), if f is continuous at x = a where,

f(x) = `(1 - cos[7(x - pi)])/(5(x - pi)^2`, for x ≠ π at a = π


Solve using intermediate value theorem:

Show that 5x − 6x = 0 has a root in [1, 2]


Solve using intermediate value theorem:

Show that x3 − 5x2 + 3x + 6 = 0 has at least two real root between x = 1 and x = 5


If f(x) is continuous at x = 3, where

f(x) = ax + 1, for x ≤ 3

= bx + 3, for x > 3 then.


If f(x) = `{(8-6x;   0<x≤2), (4x-12;    2<x≤3),(2x+10;    3<x≤6):}` then f(x) is ______ 


If f(x) = `{{:(tanx/x + secx",",   x ≠ 0),(2",",  x = 0):}`, then ______.


If f(x) = `{{:(x, "for"  x ≤ 0),(0,
"for"  x > 0):}`, then f(x) at x = 0 is ______.


The function f(x) = x – |x – x2| is ______.


For x > 0, `lim_(x rightarrow 0) ((sin x)^(1//x) + (1/x)^sinx)` is ______.


If f(x) = `{{:((3 sin πx)/(5x),",", x ≠ 0),(2k,",", x = 0):}`

is continuous at x = 0, then the value of k is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×