Advertisements
Advertisements
प्रश्न
Test the continuity of the following function at the point or interval indicated against them :
f(x) `{:(= (sqrt(x - 1) - (x - 1)^(1/3))/(x - 2)",", "for" x ≠ 2),(= 1/5",", "for" x = 2):}}`at x = 2
उत्तर
f(2) = `1/5` ...(Given) ...(1)
`lim_(x -> 2) "f"(x) = lim_(x -> 2) (sqrt(x - 1) - (x - 1)^(1/3))/(x - 2)`
Put x = 1 + h. Then as x → 2, h → 1
Also x – 1 = h and x – 2 = (1 + h) – 2 = h – 1
∴ `lim_(x -> 2) "f"(x) = lim_("h" -> 1) (sqrt("h") - "h"^(1/3))/("h" - 1)`
= `lim_("h" -> 1) ((sqrt("h") - 1) - ("h"^(1/3) - 1))/("h" - 1)`
= `lim_("h" -> 1) [(sqrt("h") - 1)/("h" - 1) - ("h"^(1/3) - 1)/("h" - 1)]`
= `lim_("h" -> 1) (("h"^(1/2) - 1^(1/2))/("h" - 1)) - lim_("h" -> 1) (("h"^(1/3) - 1^(1/3))/("h" - 1))`
= `1/2(1) ^(-1/2) - 1/3(1)^(-2/3) ...[because lim_(x -> "a") (x^"n" - "a"^"n")/(x - "a") = "na"^("n" - 1)]`
= `1/2 - 1/3`
= `1/6`
From (1) and (2),
`lim_(x -> 2) "f"(x) ≠ "f"(2)`
∴ f is discontinuous at x = 2
APPEARS IN
संबंधित प्रश्न
Examine whether the function is continuous at the points indicated against them:
f(x) = x3 − 2x + 1, for x ≤ 2
= 3x − 2, for x > 2, at x = 2
Examine whether the function is continuous at the points indicated against them:
f(x) = `(x^2 + 18x - 19)/(x - 1)` for x ≠ 1
= 20 for x = 1, at x = 1
Examine the continuity of `f(x) = {:((x^2 - 9)/(x - 3)",", "for" x ≠ 3),(=8",", "for" x = 3):}}` at x = 3.
Test the continuity of the following function at the point or interval indicated against them :
f(x) `{:(= ((27 - 2x)^(1/3) - 3)/(9 - 3(243 + 5x)^(1/5))",", "for" x ≠ 0),(= 2",", "for" x = 0):}}` at x = 0.
Test the continuity of the following function at the point or interval indicated against them:
f(x) `{:( =(x^2 + 8x - 20)/(2x^2 - 9x + 10)",", "for" 0 < x < 3"," x ≠ 2),(= 12",", "for" x = 2),(= (2 - 2x - x^2)/(x - 4)",", "for" 3 ≤ x < 4):}}` at x = 2
Identify discontinuities for the following function as either a jump or a removable discontinuity :
f(x) `{:(= 4 + sin x",", "for" x < pi),(= 3 - cos x",", "for" x > pi):}`
Show that following function have continuous extension to the point where f(x) is not defined. Also find the extension :
f(x) = `(1 - cos2x)/sinx`, for x ≠ 0
Discuss the continuity of the following function at the point indicated against them :
f(x) `{:(=("e"^(1/x) - 1)/("e"^(1/x) + 1)",", "for" x ≠ 0),(= 1",", "for" x = 0):}}` at x = 0
The following function has a removable discontinuity? If it has a removable discontinuity, redefine the function so that it become continuous :
f(x) `{:(= 3x + 2",", "for" -4 ≤ x ≤-2),(= 2x - 3";", "for" -2 < x ≤ 6):}`
If f(x) = `(cos^2 x - sin^2 x - 1)/(sqrt(3x^2 + 1) - 1)` for x ≠ 0, is continuous at x = 0 then find f(0)
Show that there is a root for the equation x3 − 3x = 0 between 1 and 2.
Suppose f(x) `{:(= "p"x + 3",", "for" "a" ≤ x ≤ "b"),(= 5x^2 − "q"",", "for" "b" < x ≤ "c"):}`
Find the condition on p, q, so that f(x) is continuous on [a, c], by filling in the blanks.
f(b) = ______
`lim_(x -> "b"^+) "f"(x)` = _______
∴ pb + 3 = _______ − q
∴ p = `"_____"/"b"` is the required condition
Select the correct answer from the given alternatives:
If f(x) = `((sin2x)tan5x)/("e"^(2x) - 1)^2`, for x ≠ 0 is continuous at x = 0, then f(0) is
Select the correct answer from the given alternatives:
f(x) = `(x^2 - 7x + 10)/(x^2 + 2x - 8)`, for x ∈ [– 6, – 3]
Select the correct answer from the given alternatives:
If f(x) = `((4 + 5x)/(4 - 7x))^(4/x)`, for x ≠ 0 and f(0) = k, is continuous at x = 0, then k is
Discuss the continuity of the following function at the point(s) or on the interval indicated against them:
f(x) `{:(= (x^2 - 3x - 10)/(x - 5)",", "for" 3 ≤ x ≤ 6"," x ≠ 5),(= 10",", "for" x = 5),(=(x^2 - 3x - 10)/(x - 5)",", "for" 6 < x ≤ 9):}`
Discuss the continuity of the following function at the point(s) or on the interval indicated against them:
f(x) = [x + 1] for x ∈ [−2, 2)
Where [*] is greatest integer function.
Identify discontinuity for the following function as either a jump or a removable discontinuity on their respective domain:
f(x) `{:(= x^2 + x - 3,"," "for" x ∈ [ -5, -2)),(= x^2 - 5,"," "for" x ∈ (-2, 5]):}`
Identify discontinuity for the following function as either a jump or a removable discontinuity on their respective domain:
f(x) `{:(= (x^2 + x + 1)/(x + 1)"," , "for" x ∈ [0, 3)),(=(3x +4)/(x^2 - 5)"," , "for" x ∈ [3, 6]):}`
Discuss the continuity of the following function at the point or on the interval indicated against them. If the function is discontinuous, identify the type of discontinuity and state whether the discontinuity is removable. If it has a removable discontinuity, redefine the function so that it becomes continuous:
f(x) = `((x + 3)(x^2 - 6x + 8))/(x^2 - x - 12)`
Discuss the continuity of the following function at the point or on the interval indicated against them. If the function is discontinuous, identify the type of discontinuity and state whether the discontinuity is removable. If it has a removable discontinuity, redefine the function so that it becomes continuous:
f(x) `{:(= x^2 + 2x + 5"," , "for" x ≤ 3),( = x^3 - 2x^2 - 5",", "for" x > 3):}`
Find f(a), if f is continuous at x = a where,
f(x) = `(1 - cos[7(x - pi)])/(5(x - pi)^2`, for x ≠ π at a = π
Solve using intermediate value theorem:
Show that 5x − 6x = 0 has a root in [1, 2]
If f(x) = `[tan (pi/4 + x)]^(1/x)`, x ≠ 0 at
= k, x = 0 is continuous x = 0. Then k = ______.
Let f : [-1, 2] → [0, ∞] be a continuous function such that f(x) = f(1 - x) ∀ x ∈ [-1, 2].
Let R1 = `int_-1^2 xf(x) dx` and R2 be the area of the region bounded by y = f(x), x = -1, x = 2 and the X-axis. Then, ______
If function `f(x)={((x^2-9)/(x-3), ",when "xne3),(k, ",when "x =3):}` is continuous at x = 3, then the value of k will be ______.
If f(x) = `{{:(tanx/x + secx",", x ≠ 0),(2",", x = 0):}`, then ______.
If f(x) = `1/(1 - x)`, the number of points of discontinuity of f{f[f(x)]} is ______.
Which of the following is not continuous for all x?
The function f(x) = x – |x – x2| is ______.
If f(x) = `{{:((x - 4)/(|x - 4|) + a",", "for" x < 4),(a + b",", "for" x = 4 "is continuous at" x = 4","),((x - 4)/(|x - 4|) + b",", "for" x > 4):}`
then ______.
If f(x) = `{{:((3 sin πx)/(5x),",", x ≠ 0),(2k,",", x = 0):}`
is continuous at x = 0, then the value of k is ______.
If f(x) = `{{:((sin^3(sqrt(3)).log(1 + 3x))/((tan^-1 sqrt(x))^2(e^(5sqrt(3)) - 1)x)",", x ≠ 0),( a",", x = 0):}`
is continuous in [0, 1] then a is equal to ______.