Advertisements
Advertisements
рдкреНрд░рд╢реНрди
Find the quadratic polynomial, sum of whose zeroes is 0 and their product is -1. Hence, find the zeroes of the polynomial.
рдЙрддреНрддрд░
Let ЁЭЫ╝ and ЁЭЫ╜ be the zeroes of the required polynomial f(x).
Then (ЁЭЫ╝ + ЁЭЫ╜) = 0 and ЁЭЫ╝ЁЭЫ╜ = -1
`∴ F(x)=x^2-(∝+β)x+∝β `
⇒ `f(x)=x^2-o x+(-1)`
⇒`f(x) = x2 ╦Ч 1`
Hence, required polynomial `f(x) =x^2-1`
`∴ f(x)=0⇒ x^2-1=0`
`⇒ (x+1) (x-1)=0`
`⇒(x+1)=0 or (x-1)=0`
` ⇒ x=-1 or x=1`
So, the zeroes of f(x) are -1 and 1.
APPEARS IN
рд╕рдВрдмрдВрдзрд┐рдд рдкреНрд░рд╢реНтАНрди
if α and β are the zeros of ax2 + bx + c, a ≠ 0 then verify the relation between zeros and its cofficients
Find a quadratic polynomial with the given numbers as the sum and product of its zeroes respectively.
`0, sqrt5`
Find a quadratic polynomial with the given numbers as the sum and product of its zeroes respectively.
1, 1
Find all zeroes of the polynomial `(2x^4 - 9x^3 + 5x^2 + 3x - 1)` if two of its zeroes are `(2 + sqrt3)` and `(2 - sqrt3)`
Find the zeroes of the quadratic polynomial `(8x^2 ╦Ч 4)` and verify the relation between the zeroes and the coefficients
Verify that 3, -2, 1 are the zeros of the cubic polynomial `p(x) = (x^3 – 2x2 – 5x + 6)` and verify the relation between it zeros and coefficients.
If ЁЭЫ╝, ЁЭЫ╜ are the zeroes of the polynomial `f(x) = 5x^2 -7x + 1` then `1/∝+1/β=?`
Zeroes of a polynomial can be determined graphically. No. of zeroes of a polynomial is equal to no. of points where the graph of polynomial ______.
If one of the zeroes of the cubic polynomial x3 + ax2 + bx + c is –1, then the product of the other two zeroes is ______.
If the zeroes of a quadratic polynomial ax2 + bx + c are both positive, then a, b and c all have the same sign.