Advertisements
Advertisements
प्रश्न
Find the combined equation of lines passing through the origin and each of which making an angle of 60° with the Y-axis.
उत्तर
Let OA and OB be the lines through the origin making an angle of 60° with the Y-axis.
Then OA and OB make an angle of 30° and 150° with the positive direction of X-axis.
∴ slope of OA = tan 30° = `1/sqrt3`
∴ equation of the line OA is
y = `1/sqrt3` x i.e. `"x" - sqrt3"y" = 0`
Slope of OB = tan 150° = tan (180° - 30°)
= - tan 30° = `- 1/sqrt3`
∴ equation of the line OB is
y = `- 1/sqrt3 "x"` i.e. x + `sqrt3`y = 0
∴ required combined equation is
`("x" - sqrt3"y")("x" + sqrt3"y") = 0`
i.e. x2 - 3y2 = 0
संबंधित प्रश्न
. Show that the lines represented by 3x2 - 4xy - 3y2 = 0 are perpendicular to each other.
Find the value of k if lines represented by kx2 + 4xy – 4y2 = 0 are perpendicular to each other.
Find the measure of the acute angle between the line represented by:
2x2 + 7xy + 3y2 = 0
Find the measure of the acute angle between the line represented by:
(a2 - 3b2)x2 + 8abxy + (b2 - 3a2)y2 = 0
Find the combined equation of lines passing through the origin each of which making an angle of 30° with the line 3x + 2y - 11 = 0
If the angle between the lines represented by ax2 + 2hxy + by2 = 0 is equal to the angle between the lines 2x2 - 5xy + 3y2 = 0, then show that 100 (h2 - ab) = (a + b)2.
Choose correct alternatives:
If acute angle between lines ax2 + 2hxy + by2 = 0 is, `pi/4`, then 4h2 = ______.
Find the joint equation of the pair of lines which bisect angles between the lines given by x2 + 3xy + 2y2 = 0
If the slope of one of the lines given by ax2 + 2hxy + by2 = 0 is three times the other, prove that 3h2 = 4ab.
Show that the line 3x + 4y + 5 = 0 and the lines (3x + 4y)2 - 3(4x - 3y)2 = 0 form the sides of an equilateral triangle.
Show that the lines x2 - 4xy + y2 = 0 and the line x + y = `sqrt6` form an equilateral triangle. Find its area and perimeter.
If the slope of one of the lines given by ax2 + 2hxy + by2 = 0 is square of the slope of the other line, show that a2b + ab2 + 8h3 = 6abh.
Prove that the product of length of perpendiculars drawn from P(x1, y1) to the lines represented by ax2 + 2hxy + by2 = 0 is `|("ax"_1^2 + "2hx"_1"y"_1 + "by"_1^2)/(sqrt("a - b")^2 + "4h"^2)|`
Show that the difference between the slopes of the lines given by (tan2θ + cos2θ)x2 - 2xy tan θ + (sin2θ)y2 = 0 is two.
Find the measure of the acute angle between the lines given by x2 − 4xy + y2 = 0
Find the value of h, if the measure of the angle between the lines 3x2 + 2hxy + 2y2 = 0 is 45°.
If θ is the acute angle between the lines given by ax2 + 2hxy + by2 = 0 then prove that tan θ = `|(2sqrt("h"^2) - "ab")/("a" + "b")|`. Hence find acute angle between the lines 2x2 + 7xy + 3y2 = 0
The angle between the pair of straight lines 2x2 - 6xy + y2 = 0 is tan-1 (p), where p = ______
The angle between lines `(x - 2)/2 = (y - 3)/(- 2) = (z - 5)/1` and `(x - 2)/1 = (y - 3)/2 = (z - 5)/2` is ______.
If the line `x/(3) = y/(4)` = z is perpendicular to the line `(x - 1)/k = (y + 2)/(3) = (z - 3)/(k - 1)`, then the value of k is ______.
The acute angle between the curve x = 2y2 and y = 2x2 at `(1/2, 1/2)` is ______.
If ax2 + 2hxy + by2 = 0 represents a pair of lines and h2 = ab ≠ 0 then find the ratio of their slopes.
If θ is the acute angle between the lines represented by ax2 + 2hxy + by2 = 0 then prove that tan θ = `|(2sqrt(h^2 - ab))/(a + b)|`
Find the combined equation of the pair of lines through the origin and making an angle of 30° with the line 2x – y = 5
If the lines represented by 5x2 – 3xy + ky2 = 0 are perpendicular to each other, find the value of k.
Prove that the acute angle θ between the lines represented by the equation ax2 + 2hxy+ by2 = 0 is tanθ = `|(2sqrt(h^2 - ab))/(a + b)|` Hence find the condition that the lines are coincident.