मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

If ax2 + 2hxy + by2 = 0 represents a pair of lines and h2 = ab ≠ 0 then find the ratio of their slopes. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If ax2 + 2hxy + by2 = 0 represents a pair of lines and h2 = ab ≠ 0 then find the ratio of their slopes.

बेरीज

उत्तर

h2 = ab

∴ h2 − ab = 0

∴ Lines are real and coincident.

Let m1 and m2 be the slope of lines represented by the equation ax2 + 2hxy + by2 = 0.

As the lines are real and coincident,

∴ m1 = m2

∴ `"m"_1/"m"_2` = 1

Their ratio is 1 : 1.

shaalaa.com
Angle between lines represented by ax2 + 2hxy + by2 = 0
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2022-2023 (March) Official

संबंधित प्रश्‍न

. Show that the lines represented by 3x2 - 4xy - 3y2 = 0 are perpendicular to each other.


Show that the lines represented by x2 + 6xy + 9y2 = 0 are coincident.


Find the measure of the acute angle between the line represented by:

2x2 + 7xy + 3y2 = 0


Find the measure of the acute angle between the line represented by:

4x2 + 5xy + y2 = 0


Find the measure of the acute angle between the line represented by:

(a2 - 3b2)x2 + 8abxy + (b2 - 3a2)y2 = 0


Find the combined equation of lines passing through the origin each of which making an angle of 30° with the line 3x + 2y - 11 = 0 


If the angle between the lines represented by ax2 + 2hxy + by2 = 0 is equal to the angle between the lines 2x2 - 5xy + 3y2 = 0, then show that 100 (h2 - ab) = (a + b)2


Find the combined equation of lines passing through the origin and each of which making an angle of 60° with the Y-axis.


Find the joint equation of the pair of lines which bisect angles between the lines given by x2 + 3xy + 2y2 = 0 


Show that the lines x2 − 4xy + y2 = 0 and x + y = 10 contain the sides of an equilateral triangle. Find the area of the triangle. 


If the slope of one of the lines given by ax2 + 2hxy + by2 = 0 is three times the other, prove that 3h2 = 4ab.


Show that the lines x2 - 4xy + y2 = 0 and the line x + y = `sqrt6` form an equilateral triangle. Find its area and perimeter.


If the slope of one of the lines given by ax2 + 2hxy + by2 = 0 is square of the slope of the other line, show that a2b + ab2 + 8h3 = 6abh.


Prove that the product of length of perpendiculars drawn from P(x1, y1) to the lines represented by ax2 + 2hxy + by2 = 0 is `|("ax"_1^2 + "2hx"_1"y"_1 + "by"_1^2)/(sqrt("a - b")^2 + "4h"^2)|`


Show that the difference between the slopes of the lines given by (tan2θ + cos2θ)x2 - 2xy tan θ + (sin2θ)y2 = 0 is two.


The acute angle between the lines represented by x2 + xy = 0 is ______.


Find the measure of the acute angle between the lines given by x2 − 4xy + y2 = 0 


Find the value of h, if the measure of the angle between the lines 3x2 + 2hxy + 2y2 = 0 is 45°. 


If θ is the acute angle between the lines given by ax2 + 2hxy + by2 = 0 then prove that tan θ = `|(2sqrt("h"^2) - "ab")/("a" + "b")|`. Hence find acute angle between the lines 2x2 + 7xy + 3y2 = 0 


If the angle between the lines represented by ax2 + 2hxy + by2 = 0 is equal to the angle between the lines 2x2 − 5xy + 3y2 = 0, then show that 100(h2 − ab) = (a + b)2


The acute angle between lines x - 3 = 0 and x + y = 19 is ______.


Which of the following pair of straight lines intersect at right angles?


If the line `x/(3) = y/(4)` = z is perpendicular to the line `(x - 1)/k = (y + 2)/(3) = (z - 3)/(k - 1)`, then the value of k is ______.


The acute angle between the curve x = 2y2 and y = 2x2 at `(1/2, 1/2)` is ______.


If θ is the acute angle between the lines represented by ax2 + 2hxy + by2 = 0 then prove that tan θ = `|(2sqrt(h^2 - ab))/(a + b)|`


Find the combined equation of the pair of lines through the origin and making an angle of 30° with the line 2x – y = 5


If θ is the acute angle between the lines given by 3x2 – 4xy + by2 = 0 and tan θ = `1/2`, find b.


If the lines represented by 5x2 – 3xy + ky2 = 0 are perpendicular to each other, find the value of k.


Prove that the acute angle θ between the lines represented by the equation ax2 + 2hxy+ by2 = 0 is tanθ = `|(2sqrt(h^2 - ab))/(a + b)|` Hence find the condition that the lines are coincident.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×