Advertisements
Advertisements
प्रश्न
Find the derivative of the inverse function of the following : y = x ·7x
उत्तर
y = x·7x
Differentiating w.r.t. x, we get
`"dy"/"dx" = "d"/"dx"(x.7^x)`
= `x"d"/"dx"(7^x) + 7^x"d"/"dx"(x)`
= x·7x log7 + 7x × 1
= 7x (x log7 + 1)
The derivative of inverse function of y = f(x) is given by
`"dx"/"dy" = (1)/(("dy"/"dx")`
= `(1)/(7^x(xlog7 + 1)`
APPEARS IN
संबंधित प्रश्न
Find the derivative of the function y = f(x) using the derivative of the inverse function x = f–1(y) in the following:
y = `sqrt(x)`
Find the derivative of the function y = f(x) using the derivative of the inverse function x = f-1(y) in the following: y = `sqrt(2 - sqrt(x)`
Find the derivative of the function y = f(x) using the derivative of the inverse function x = f–1(y) in the following:
y = log(2x – 1)
Find the derivative of the function y = f(x) using the derivative of the inverse function x = f–1(y) in the following: y = ex – 3
Find the derivative of the function y = f(x) using the derivative of the inverse function x = f–1(y) in the following: y = `log_2(x/2)`
Find the derivative of the inverse function of the following : y = x2·ex
Find the derivative of the inverse function of the following : y = x cos x
Find the derivative of the inverse of the following functions, and also find their value at the points indicated against them. y = 3x2 + 2logx3
Find the derivative of the inverse of the following functions, and also find their value at the points indicated against them. y = sin(x – 2) + x2
Using derivative, prove that: tan –1x + cot–1x = `pi/(2)`
Using derivative, prove that: sec–1x + cosec–1x = `pi/(2)` ...[for |x| ≥ 1]
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 12 + 10x + 25x2
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 18x + log(x - 4).
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 25x + log(1 + x2)
Find the marginal demand of a commodity where demand is x and price is y.
y = `(5"x" + 9)/(2"x" - 10)`
If `"x"^3 + "y"^2 + "xy" = 7` Find `"dy"/"dx"`
If `"x"^3"y"^3 = "x"^2 - "y"^2`, Find `"dy"/"dx"`
If y = `tan^-1((2x)/(1 - x^2))`, x ∈ (−1, 1) then `("d"y)/("d"x)` = ______.
Differentiate `tan^-1[(sqrt(1 + x^2) - 1)/x]` w.r. to `tan^-1[(2x sqrt(1 - x^2))/(1 - 2x^2)]`
Choose the correct alternative:
What is the rate of change of demand (x) of a commodity with respect to its price (y) if y = 10 + x + 25x3.
Choose the correct alternative:
If xm. yn = `("x" + "y")^(("m" + "n"))`, then `("dy")/("dx")` = ?
State whether the following statement is True or False:
If y = 7x + 1, then the rate of change of demand (x) of a commodity with respect to its price (y) is 7
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 5 + x2e–x + 2x
Find rate of change of demand (x) of a commodity with respect to its price (y) if y = `(3x + 7)/(2x^2 + 5)`
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 12 + 10x + 25x2
The I.F. of differential equation `dy/dx+y/x=x^2-3 "is" log x.`
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 12 + 10x + 25x2.
Find `dy/dx`, if y = `sec^-1((1 + x^2)/(1 - x^2))`.
Find the rate of change of demand (x) of a commodity with respect to its price (y) if
y = `12 + 10x + 25x^2`
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 12 + 10x + 25x2