Advertisements
Advertisements
प्रश्न
Find the domain of the following functions:
`1/2 tan^-1 (1 - x^2) - pi/4`
उत्तर
We know `1/2 tan^-1x = tan^-1 ((1 - x)/(1 + x))`
So `1/2 tan^-1 (1 - x^2) = tan^-1 [(1 - (1 - x^2))/(1 + (x - x^2))]`
= `tan^-1 x^2/(2 - x^2)`
So `1/2 tan^-1(1 - x^2) - pi/4 = tan^-1 x^2/(2 - x^2) - tan^-1 1`
= `tan^-1 [((x^2)/(2 - x^2))/(1 + (x^2/(2 - x^2))(1))]`
= `tan^-1(x^2 - 1)`
= y (say)
The domain of y is `(-oo, oo) {x | x ∈ -1}` and range is `[-1, oo){y | y ≥ -1}`
The domain for tan–1(x2 – 1) is (2n + 1)π. Since tan x is an odd function.
APPEARS IN
संबंधित प्रश्न
Find the domain of the following functions:
`tan^-1 (sqrt(9 - x^2))`
Find the value of `tan^-1(tan (5pi)/4)`
Find the value of `tan^-1 (tan(- pi/6))`
Find the value of `tan(tan^-1((7pi)/4))`
Find the value of `tan(tan^-1(1947))`
Find the value of `tan(tan^-1(- 0.2021))`
Find the value of `tan(cos^-1 (1/2) - sin^-1 (- 1/2))`
Find the value of `sin(tan^-1 (1/2) - cos^-1 (4/5))`
Find the value of `cos(sin^-1 (4/5) - tan^-1 (3/4))`