मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता १२

Find the domain of the following functions: tan-1(9-x2) - Mathematics

Advertisements
Advertisements

प्रश्न

Find the domain of the following functions:

`tan^-1 (sqrt(9 - x^2))`

बेरीज

उत्तर

f(x) = `tan^-1 (sqrt(9 - x^2))`

We know the domain of `tan^-1x` is `(- oo, oo)` and range is `(- pi/2, pi/2)`

So, the domain of f(x) = `tan^-1 (sqrt(9 - x^2))` is the set of values of x satisfying the inequality

`- oo ≤ sqrt(9 - x^2) ≤ oo`

⇒ 9 – x2 ≥ 0

⇒ x2 ≤ 9

⇒ |x| ≤ 3

Since tan x is an odd function and symmetric about the origin, tan–1 x should be an increasing function in its domain.

∴ Domain is `(2"n" + 1)^(pi/2)`

shaalaa.com
The Tangent Function and the Inverse Tangent Function
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Inverse Trigonometric Functions - Exercise 4.3 [पृष्ठ १४७]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
पाठ 4 Inverse Trigonometric Functions
Exercise 4.3 | Q 1. (i) | पृष्ठ १४७
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×