Advertisements
Advertisements
प्रश्न
Find the domain of the following functions:
`tan^-1 (sqrt(9 - x^2))`
उत्तर
f(x) = `tan^-1 (sqrt(9 - x^2))`
We know the domain of `tan^-1x` is `(- oo, oo)` and range is `(- pi/2, pi/2)`
So, the domain of f(x) = `tan^-1 (sqrt(9 - x^2))` is the set of values of x satisfying the inequality
`- oo ≤ sqrt(9 - x^2) ≤ oo`
⇒ 9 – x2 ≥ 0
⇒ x2 ≤ 9
⇒ |x| ≤ 3
Since tan x is an odd function and symmetric about the origin, tan–1 x should be an increasing function in its domain.
∴ Domain is `(2"n" + 1)^(pi/2)`
APPEARS IN
संबंधित प्रश्न
Find the domain of the following functions:
`1/2 tan^-1 (1 - x^2) - pi/4`
Find the value of `tan^-1(tan (5pi)/4)`
Find the value of `tan^-1 (tan(- pi/6))`
Find the value of `tan(tan^-1((7pi)/4))`
Find the value of `tan(tan^-1(1947))`
Find the value of `tan(tan^-1(- 0.2021))`
Find the value of `tan(cos^-1 (1/2) - sin^-1 (- 1/2))`
Find the value of `sin(tan^-1 (1/2) - cos^-1 (4/5))`
Find the value of `cos(sin^-1 (4/5) - tan^-1 (3/4))`