Advertisements
Advertisements
प्रश्न
Find the value of `cos^-1(cos((4pi)/3)) + cos^-1 (cos((5pi)/4))`
उत्तर
`cos^-1 (cos (4pi)/3) + cos^-1 (cos (5pi)/4)`
`(4pi)/3 ∈ [0, pi], (5pi)/4 ∈ [0, pi]`
`cos^-1[cos(pi+pi/3)]+cos^-1[cos(pi+pi/4)]`
`cos^-1[-cos (pi)/3]+cos^-1[-cos (pi)/4]`
`cos^-1[-1/2]+cos^-1[-1/2]`
x = `cos^-1(-1/2)`
cosx = `-1/2`
`(2pi)/3+(3pi)/4`
= `(8pi + 9pi)/12`
= `(17pi)/12`
APPEARS IN
संबंधित प्रश्न
Find all values of x such that – 6π ≤ x ≤ 6π and cos x = 0
Find all values of x such that – 5π ≤ x ≤ 5π and cos x = 1
State the reason for `cos^-1 [cos(- pi/6)] ≠ - pi/6`
Is cos–1(– x) = π – cos–1 true? justify your answer
Find the principal value of `cos^-1 (1/2)`
Find the value of `2cos^-1 (1/2) + sin^-1 (1/2)`
Find the value of `cos^-1(1/2) + sin^-1( - 1)`
Find the value of `cos-1 [cos pi/7 cos pi/17 - sin pi/7 sin pi/17]`
Find the domain of `f(x) = sin^-1 ((|x| - 2)/3) + cos^-1 ((1 - |x|)/4)`
Find the domain of `g(x) = sin^-1x + cos^-1x`
For what value of x, the inequality `pi/2 < cos^-1 (3x - 1) < pi` holds?
Find the value of `cos[cos^-1 (4/5) + sin^-1(4/5)]`