Advertisements
Advertisements
प्रश्न
Find the value of `2cos^-1 (1/2) + sin^-1 (1/2)`
उत्तर
y = `cos^-1 (1/2)`
cos y = `1/2 = cos pi/3`
y = `pi/3 ∈[0, pi]`
x = `sin^-1 (1/2)`
sin x = `1/2 = sin pi/3`
x = `pi/6 ∈[0, pi]`
`2cos^1(1/2) + sin^-1(1/2) = 2(pi/3) + pi/6`
= `(2pi)/3 + pi/6`
= `(4pi + pi)/6`
= `(5pi)/6`
APPEARS IN
संबंधित प्रश्न
Find all values of x such that – 5π ≤ x ≤ 5π and cos x = 1
State the reason for `cos^-1 [cos(- pi/6)] ≠ - pi/6`
Is cos–1(– x) = π – cos–1 true? justify your answer
Find the principal value of `cos^-1 (1/2)`
Find the value of `cos^-1(1/2) + sin^-1( - 1)`
Find the value of `cos-1 [cos pi/7 cos pi/17 - sin pi/7 sin pi/17]`
Find the domain of `f(x) = sin^-1 ((|x| - 2)/3) + cos^-1 ((1 - |x|)/4)`
Find the domain of `g(x) = sin^-1x + cos^-1x`
For what value of x, the inequality `pi/2 < cos^-1 (3x - 1) < pi` holds?
Find the value of `cos[cos^-1 (4/5) + sin^-1(4/5)]`
Find the value of `cos^-1(cos((4pi)/3)) + cos^-1 (cos((5pi)/4))`