Advertisements
Advertisements
प्रश्न
Is cos–1(– x) = π – cos–1 true? justify your answer
उत्तर
Let π = cos–1(– x)
⇒ cos π = – x
⇒ – cos π = x
⇒ cos(π – π) = x
⇒ π – π = cos–1 x
⇒ π – cos–1x = π
⇒ π – cos–1x = cos–1(– x)
APPEARS IN
संबंधित प्रश्न
Find all values of x such that – 6π ≤ x ≤ 6π and cos x = 0
Find all values of x such that – 5π ≤ x ≤ 5π and cos x = 1
State the reason for `cos^-1 [cos(- pi/6)] ≠ - pi/6`
Find the principal value of `cos^-1 (1/2)`
Find the value of `2cos^-1 (1/2) + sin^-1 (1/2)`
Find the value of `cos^-1(1/2) + sin^-1( - 1)`
Find the value of `cos-1 [cos pi/7 cos pi/17 - sin pi/7 sin pi/17]`
Find the domain of `f(x) = sin^-1 ((|x| - 2)/3) + cos^-1 ((1 - |x|)/4)`
Find the domain of `g(x) = sin^-1x + cos^-1x`
For what value of x, the inequality `pi/2 < cos^-1 (3x - 1) < pi` holds?
Find the value of `cos[cos^-1 (4/5) + sin^-1(4/5)]`
Find the value of `cos^-1(cos((4pi)/3)) + cos^-1 (cos((5pi)/4))`