Advertisements
Advertisements
प्रश्न
Find the equation of the circle having (4, 7) and (-2, 5) as the extremities of a diameter.
उत्तर
The equation of the circle when entremities (x1, y1) and (x2, y2) are given is (x – x1) (x – x2) + (y – y1) (y – y2) = 0
⇒ (x – 4) (x + 2) + (y – 7) (y – 5) = 0
⇒ x2 – 2x – 8 + y2 – 12y + 35 = 0
⇒ x2 + y2 – 2x – 12y + 27 = 0
APPEARS IN
संबंधित प्रश्न
Find the centre and radius of the circle.
5x2 + 5y2+ 4x – 8y – 16 = 0
Find the equation of the circle whose centre is (2, 3) and which passes through (1, 4).
If the lines x + y = 6 and x + 2y = 4 are diameters of the circle, and the circle passes through the point (2, 6) then find its equation.
The length of the tangent from (4, 5) to the circle x2 + y2 = 16 is:
Find the equation of circles that touch both the axes and pass through (− 4, −2) in general form
Find centre and radius of the following circles
x2 + y2 – x + 2y – 3 = 0
Choose the correct alternative:
The equation of the circle passing through (1, 5) and (4, 1) and touching y-axis `x^2 + y^2 - 5x - 6y + 9 + lambda(4x + 3y - 19)` = where `lambda` is equal to
Choose the correct alternative:
The circle x2 + y2 = 4x + 8y + 5 intersects the line 3x – 4y = m at two distinct points if
Choose the correct alternative:
The equation of the normal to the circle x2 + y2 – 2x – 2y + 1 = 0 which is parallel to the line 2x + 4y = 3 is
Choose the correct alternative:
The radius of the circle passing through the points (6, 2) two of whose diameter are x + y = 6 and x + 2y = 4 is