Advertisements
Advertisements
प्रश्न
Find the graphical solution of the following system of linear inequations:
3x + 2y ≤ 1800, 2x + 7y ≤ 1400
उत्तर
To find a graphical solution, construct the table as follows:
Inequation | Inequation | Double Intercept form | Points (x, y) | Region |
3x + 2y ≤ 1800 | 3x + 2y = 1800 | `"x"/600+"y"/900=1` | A (600, 0), B (0, 900) |
3(0) + 2(0) ≤ 1800 ∴ 0 ≤ 1800 ∴ origin side |
2x + 7y ≤ 1400 | 2x + 7y = 1400 | `"x"/700+"y"/200=1` | C (700, 0), D (0, 200) |
2(0) + 7(0) ≤ 1400 ∴ 0 ≤ 1400 ∴ origin side |
Shaded portion represents the graphical solution.
APPEARS IN
संबंधित प्रश्न
Solve the following system of inequalities graphically: x ≥ 3, y ≥ 2
Solve the following system of inequalities graphically: 2x + y≥ 6, 3x + 4y ≤ 12
Solve the following system of inequalities graphically: x + y≥ 4, 2x – y > 0
Solve the following system of inequalities graphically: 2x – y > 1, x – 2y < –1
Solve the following system of inequalities graphically: 2x + y≥ 8, x + 2y ≥ 10
Solve the following system of inequalities graphically: x + y ≤ 9, y > x, x ≥ 0
A solution is to be kept between 86° and 95°F. What is the range of temperature in degree Celsius, if the Celsius (C)/ Fahrenheit (F) conversion formula is given by\[F = \frac{9}{5}C + 32\]
A solution is to be kept between 30°C and 35°C. What is the range of temperature in degree Fahrenheit?
To receive grade 'A' in a course, one must obtain an average of 90 marks or more in five papers each of 100 marks. If Shikha scored 87, 95, 92 and 94 marks in first four paper, find the minimum marks that she must score in the last paper to get grade 'A' in the course.
The longest side of a triangle is three times the shortest side and third side is 2 cm shorter than the longest side if the perimeter of the triangles at least 61 cm, find the minimum length of the shortest-side.
Solve each of the following system of equations in R.
\[5x - 7 < 3\left( x + 3 \right), 1 - \frac{3x}{2} \geq x - 4\]
Find the graphical solution of the following system of linear inequations:
x – y ≤ 0, 2x – y ≥ − 2
Find the graphical solution of the following system of linear inequations:
2x + 3y ≥ 12, – x + y ≤ 3, x ≤ 4, y ≥ 3
Solve the following system of inequalities graphically.
2x – y ≥ 1, x – 2y ≤ – 1
Find the linear inequalities for which the shaded region in the given figure is the solution set.
Show that the following system of linear inequalities has no solution x + 2y ≤ 3, 3x + 4y ≥ 12, x ≥ 0, y ≥ 1
Show that the solution set of the following system of linear inequalities is an unbounded region 2x + y ≥ 8, x + 2y ≥ 10, x ≥ 0, y ≥ 0.