Advertisements
Advertisements
प्रश्न
Find the points of discontinuity of the function f, where `f(x) = {{:(sinx",", 0 ≤ x ≤ pi/4),(cos x",", pi/4 < x < pi/2):}`
उत्तर
Clearly f(x) is defined at all points of `[0, pi/2]`
Case (i) Let x0 ∈ `[0, pi/4]`
`lim_(x -> x_0) f(x) = lim_(x -> x_0) sin x`
= sin x0
`f(x_0)` = sin x0
∴ `lim_(x -> x_0) f(x) = f(x_0)`
Hence f(x) is continuous at x = x0.
Since x0 is an arbitrary point of `[0, pi/4]`
f(x) is continuous at all poin of `[0, pi/4]`
Case (ii) Let x0 ∈ `[pi/4, pi/2]`
`lim_(x -> x_0) f(x) = lim_(x -> x_0) cos x`
= cos x0
`f(x_0)` = cos x0
∴ `lim_(x -> x_0) f(x) = f(x_0)`
Hence, f(x) is continuous at x = x0.
Since x0 is an arbitrary point of `[pi/4, pi/2]`
f(x) is continuous at all points of `[pi/4, pi/2]`
Hence, f (x) is continuous at all points `[0, pi/2]`.
APPEARS IN
संबंधित प्रश्न
Examine the continuity of the following:
x + sin x
Examine the continuity of the following:
x2 cos x
Examine the continuity of the following:
`|x - 2|/|x + 1|`
Find the points of discontinuity of the function f, where `f(x) = {{:(4x + 5",", "if", x ≤ 3),(4x - 5",", "if", x > 3):}`
Find the points of discontinuity of the function f, where `f(x) = {{:(x^3 - 3",", "if" x ≤ 2),(x^2 + 1",", "if" x < 2):}`
If f and g are continuous functions with f(3) = 5 and `lim_(x -> 3) [2f(x) - g(x)]` = 4, find g(3)
Find the points at which f is discontinuous. At which of these points f is continuous from the right, from the left, or neither? Sketch the graph of f.
`f(x) = {{:(2x + 1",", "if" x ≤ - 1),(3x",", "if" - 1 < x < 1),(2x - 1",", "if" x ≥ 1):}`
Find the points at which f is discontinuous. At which of these points f is continuous from the right, from the left, or neither? Sketch the graph of f.
`f(x) = {{:((x - 1)^3",", "if" x < 0),((x + 1)^3",", "if" x ≥ 0):}`
A function f is defined as follows:
`f(x) = {{:(0, "for" x < 0;),(x, "for" 0 ≤ x ≤ 1;),(- x^2 +4x - 2, "for" 1 ≤ x ≤ 3;),(4 - x, "for" x ≥ 3):}`
Is the function continuous?
State how continuity is destroyed at x = x0 for the following graphs.
State how continuity is destroyed at x = x0 for the following graphs.
State how continuity is destroyed at x = x0 for the following graphs.
Choose the correct alternative:
If f : R → R is defined by `f(x) = [x - 3] + |x - 4|` for x ∈ R then `lim_(x -> 3^-) f(x)` is equal to
Choose the correct alternative:
The value of `lim_(x -> "k") x - [x]`, where k is an integer is
Choose the correct alternative:
Let f : R → R be defined by `f(x) = {{:(x, x "is irrational"),(1 - x, x "is rational"):}` then f is
Choose the correct alternative:
The function `f(x) = {{:((x^2 - 1)/(x^3 + 1), x ≠ - 1),("P", x = -1):}` is not defined for x = −1. The value of f(−1) so that the function extended by this value is continuous is
Choose the correct alternative:
Let f be a continuous function on [2, 5]. If f takes only rational values for all x and f(3) = 12, then f(4.5) is equal to