मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता ११

Find the points of discontinuity of the function f, where ,,f(x)={sinx, 0≤x≤π4cosx,π4<x<π2 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the points of discontinuity of the function f, where `f(x) = {{:(sinx",",  0 ≤ x ≤ pi/4),(cos x",", pi/4 < x < pi/2):}`

बेरीज

उत्तर

Clearly f(x) is defined at all points of `[0, pi/2]`

Case (i) Let x0 ∈ `[0, pi/4]`

`lim_(x -> x_0) f(x) =  lim_(x -> x_0) sin x`

= sin x0

`f(x_0)` = sin x0

∴ `lim_(x -> x_0) f(x) = f(x_0)`

Hence f(x) is continuous at x = x0.

Since x0 is an arbitrary point of `[0, pi/4]`

f(x) is continuous at all poin of `[0, pi/4]`

Case (ii) Let x0 ∈ `[pi/4, pi/2]` 

`lim_(x -> x_0) f(x) =  lim_(x -> x_0) cos x`

= cos x0

`f(x_0)` = cos x0 

∴ `lim_(x -> x_0) f(x) = f(x_0)`

Hence, f(x) is continuous at x = x0

Since x0 is an arbitrary point of `[pi/4, pi/2]`

f(x) is continuous at all points of `[pi/4, pi/2]`

Hence, f (x) is continuous at all points `[0, pi/2]`.

shaalaa.com
Continuity
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Differential Calculus - Limits and Continuity - Exercise 9.5 [पृष्ठ १२७]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
पाठ 9 Differential Calculus - Limits and Continuity
Exercise 9.5 | Q 3. (iv) | पृष्ठ १२७

संबंधित प्रश्‍न

Examine the continuity of the following:

x + sin x


Examine the continuity of the following:

x2 cos x


Examine the continuity of the following:

`|x - 2|/|x + 1|`


Find the points of discontinuity of the function f, where `f(x) = {{:(4x + 5",",  "if",  x ≤ 3),(4x - 5",",  "if",  x > 3):}`


Find the points of discontinuity of the function f, where `f(x) = {{:(x^3 - 3",",  "if"  x ≤ 2),(x^2 + 1",",  "if"  x < 2):}`


If f and g are continuous functions with f(3) = 5 and `lim_(x -> 3) [2f(x) - g(x)]` = 4, find g(3)


Find the points at which f is discontinuous. At which of these points f is continuous from the right, from the left, or neither? Sketch the graph of f.

`f(x) = {{:(2x + 1",",  "if"  x ≤ - 1),(3x",",  "if"  - 1 < x < 1),(2x - 1",",  "if"  x ≥ 1):}`


Find the points at which f is discontinuous. At which of these points f is continuous from the right, from the left, or neither? Sketch the graph of f.

`f(x) = {{:((x - 1)^3",",  "if"  x < 0),((x + 1)^3",",  "if"  x ≥ 0):}`


A function f is defined as follows:

`f(x) = {{:(0,  "for"  x < 0;),(x,  "for"  0 ≤ x ≤ 1;),(- x^2 +4x - 2, "for"  1 ≤ x ≤ 3;),(4 - x,  "for"  x ≥ 3):}`
Is the function continuous?


State how continuity is destroyed at x = x0 for the following graphs.


State how continuity is destroyed at x = x0 for the following graphs.


State how continuity is destroyed at x = x0 for the following graphs.


Choose the correct alternative:

If f : R → R is defined by `f(x) = [x - 3] + |x - 4|` for x ∈ R then `lim_(x -> 3^-) f(x)` is equal to


Choose the correct alternative:

The value of `lim_(x -> "k") x - [x]`, where k is an integer is


Choose the correct alternative:

Let f : R → R be defined by `f(x) = {{:(x, x  "is irrational"),(1 - x, x  "is rational"):}` then f is


Choose the correct alternative:

The function `f(x) = {{:((x^2 - 1)/(x^3 + 1), x ≠ - 1),("P", x = -1):}` is not defined for x = −1. The value of f(−1) so that the function extended by this value is continuous is


Choose the correct alternative:

Let f be a continuous function on [2, 5]. If f takes only rational values for all x and f(3) = 12, then f(4.5) is equal to


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×