Advertisements
Advertisements
प्रश्न
Find the slope of a line joining the points
(sin θ, – cos θ) and (– sin θ, cos θ)
उत्तर
The given points is (sin θ, – cos θ) and (– sin θ, cos θ)
Slope of a line = `(y_2 - y_1)/(x_2 - x_1)`
= `(costheta + cos theta)/(-sin theta - sintheta)`
= `(2costheta)/(-2sintheta)`
= – cot θ
APPEARS IN
संबंधित प्रश्न
What is the inclination of a line whose slope is 1
Find the slope of a line joining the points
`(5, sqrt(5))` with the origin
What is the slope of a line perpendicular to the line joining A(5, 1) and P where P is the mid-point of the segment joining (4, 2) and (–6, 4).
Show that the given points are collinear: (– 3, – 4), (7, 2) and (12, 5)
If the three points (3, – 1), (a, 3) and (1, – 3) are collinear, find the value of a
The line through the points (– 2, a) and (9, 3) has slope `-1/2` Find the value of a.
The line through the points (– 2, 6) and (4, 8) is perpendicular to the line through the points (8, 12) and (x, 24). Find the value of x.
Show that the given points form a right angled triangle and check whether they satisfy Pythagoras theorem.
L(0, 5), M(9, 12) and N(3, 14)
Show that the given points form a parallelogram:
A(2.5, 3.5), B(10, – 4), C(2.5, – 2.5) and D(– 5, 5)
If slope of the line PQ is `1/sqrt(3)` then slope of the perpendicular bisector of PQ is