Advertisements
Advertisements
Question
Find the slope of a line joining the points
(sin θ, – cos θ) and (– sin θ, cos θ)
Solution
The given points is (sin θ, – cos θ) and (– sin θ, cos θ)
Slope of a line = `(y_2 - y_1)/(x_2 - x_1)`
= `(costheta + cos theta)/(-sin theta - sintheta)`
= `(2costheta)/(-2sintheta)`
= – cot θ
APPEARS IN
RELATED QUESTIONS
What is the slope of a line whose inclination with positive direction of x-axis is 90°
What is the slope of a line whose inclination with positive direction of x-axis is 0°
What is the inclination of a line whose slope is 0
Find the slope of a line joining the points
`(5, sqrt(5))` with the origin
If the three points (3, – 1), (a, 3) and (1, – 3) are collinear, find the value of a
The line through the points (– 2, a) and (9, 3) has slope `-1/2` Find the value of a.
Show that the given points form a parallelogram:
A(2.5, 3.5), B(10, – 4), C(2.5, – 2.5) and D(– 5, 5)
A quadrilateral has vertices at A(– 4, – 2), B(5, – 1), C(6, 5) and D(– 7, 6). Show that the mid-points of its sides form a parallelogram.
The slope of the line joining (12, 3), (4, a) is `1/8`. The value of ‘a’ is
The slope of the line which is perpendicular to a line joining the points (0, 0) and (− 8, 8) is