Advertisements
Advertisements
Question
A quadrilateral has vertices at A(– 4, – 2), B(5, – 1), C(6, 5) and D(– 7, 6). Show that the mid-points of its sides form a parallelogram.
Solution
Let A(– 4, – 2), B(5, – 1), C(6, 5) and D(– 7, 6) are the vertices of a quadrilateral.
Mid point of a line = `((x_1 + x_2)/2, (y_1 + y_2)/2)`
Mid point of AB (E) = `((-4 + 5)/2, (-2 - 1)/2) = (1/2, (-3)/2)`
Mid point of BC (F) = `((5 + 6)/2, (-1 + 5)/2) = (11/2, 4/2)` = `(11/2, 2)`
Mid point of CD (G) = `((6 - 7)/2, (5 + 6)/2) = ((-1)/2, 11/2)`
Mid point of AD (H) = `((-4 - 7)/2, (-2 + 6)/2) = ((-11)/2, 4/2) = ((-11)/2, 2)`
The midpoint of ABCD are E `(1/2, -3/2)`, F `(11/2, 2)`, G `(-1/2, 11/2)` and H `(-11/2, 2)`
Slope of a line = `(y_2 - y_1)/(x_2 - x_1)`
Slope of EF = `((-3/2 - 2)/(1/2 - 11/2)) = (((-3 - 4)/2)/((1 - 11)/2)) = (((-7)/2)/((-10)/2))`
= `(-7)/2 xx (-1)/5 = 7/10`
Slope of FG = `(11/2 - 2)/(-1/2 - 11/2) = ((11 - 4)/2)/((-1 - 11)/2) = (7/2)/(-6)`
= `7/2 xx (-1)/6`
= `(-7)/12`
Slope of GH = `(2 - 11/2)/((-11)/2 + 1/2)= ((4 - 11)/2)/((-11 + 1)/2)`
= `((-7)/2)/((-10)/2)`
= `(-7)/2 xx (-2)/10`
= `7/10`
Slope of EH = `(2 + 3/2)/(-11/2 - 1/2) = ((4 + 3)/2)/((-11 - 1)/2)`
= `(7/2)/(-6)`
= `7/2 xx (-1)/6`
= `-7/12`
Slope of EF = Slope of GH = `7/10`
∴ EF || GH ...(1)
Slope of FG = Slope of EH = `-7/12`
∴ FG || EH ...(2)
From (1) and (2) we get EFGH is a parallelogram.
The midpoint of the sides of the Quadrilateral ABCD is a Parallelogram.
APPEARS IN
RELATED QUESTIONS
What is the inclination of a line whose slope is 0
What is the inclination of a line whose slope is 1
Find the slope of a line joining the points
`(5, sqrt(5))` with the origin
If the three points (3, – 1), (a, 3) and (1, – 3) are collinear, find the value of a
The line through the points (– 2, 6) and (4, 8) is perpendicular to the line through the points (8, 12) and (x, 24). Find the value of x.
Show that the given points form a right angled triangle and check whether they satisfy Pythagoras theorem
A(1, – 4), B(2, – 3) and C(4, – 7)
If the points A(2, 2), B(– 2, – 3), C(1, – 3) and D(x, y) form a parallelogram then find the value of x and y.
The slope of the line joining (12, 3), (4, a) is `1/8`. The value of ‘a’ is
The slope of the line which is perpendicular to a line joining the points (0, 0) and (− 8, 8) is
Find the equation of a line passing through the point of intersection of the lines 4x + 7y – 3 = 0 and 2x – 3y + 1 = 0 that has equal intercepts on the axes.